Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorGoodfellow, Alister Stewart
dc.contributor.authorBuehl, Michael
dc.date.accessioned2021-07-05T11:30:12Z
dc.date.available2021-07-05T11:30:12Z
dc.date.issued2021-07-03
dc.identifier.citationGoodfellow , A S & Buehl , M 2021 , ' Hydricity Of 3d transition metal complexes from density functional theory : a benchmarking study ' , Molecules , vol. 26 , no. 13 , 4072 . https://doi.org/10.3390/molecules26134072en
dc.identifier.issn1420-3049
dc.identifier.otherPURE: 274866339
dc.identifier.otherPURE UUID: d5c2c9e9-6ca9-434a-82b6-37ec949478c2
dc.identifier.otherORCID: /0000-0002-1095-7143/work/96817293
dc.identifier.otherWOS: 000671113000001
dc.identifier.otherScopus: 85110128920
dc.identifier.urihttps://hdl.handle.net/10023/23468
dc.description.abstractA range of modern density functional theory (DFT) functionals have been benchmarked against experimentally determined metal hydride bond strengths for three first-row TM hydride complexes. Geometries were found to be produced sufficiently accurately with RI-BP86-D3(PCM)/def2-SVP and further single-point calculations with PBE0-D3(PCM)/def2-TZVP were found to reproduce the experimental hydricity accurately, with a mean absolute deviation of 1.4 kcal/mol for the complexes studied.
dc.format.extent13
dc.language.isoeng
dc.relation.ispartofMoleculesen
dc.rightsCopyright © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/4.0/).en
dc.subjectDFTen
dc.subject3d metal complexen
dc.subjectBenchmarken
dc.subjectHydricityen
dc.subjectQD Chemistryen
dc.subjectDASen
dc.subject.lccQDen
dc.titleHydricity Of 3d transition metal complexes from density functional theory : a benchmarking studyen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.identifier.doihttps://doi.org/10.3390/molecules26134072
dc.description.statusPeer revieweden
dc.identifier.urlhttps://www.mdpi.com/journal/molecules/special_issues/Alexandra_Slawinen


This item appears in the following Collection(s)

Show simple item record