St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Petrogenesis and geochemical halos of the amphibolite facies, Lower Proterozoic, Kerry Road volcanogenic massive sulfide deposit, Loch Maree Group, Gairloch, NW Scotland

Thumbnail
View/Open
Drummond_2020_Kerry_Road_OGR_AAM.pdf (5.519Mb)
Date
09/2020
Author
Drummond, Drew
Cloutier, Jonathan
Boyce, A.J.
Prave, Tony
Keywords
Kerry Road deposit
Volcanogenic massive sulfide
Lewisian complex
Alteration
S isotopes
Sulfied deformation
GE Environmental Sciences
QE Geology
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The Palaeoproterozoic Kerry Road deposit is one of the oldest examples of volcanogenic massive sulfide (VMS) mineralization. This small VMS deposit (~500,000 tons grading at 1.2% Cu, 3.5% Zn) is hosted in amphibolite facies mafic-siliciclastic units of the c. 2.0 Ga Loch Maree Group, Scotland. Sulfide mineralization consists of pyrite and pyrrhotite with subordinate chalcopyrite and sphalerite, occurring in disseminated, vein and semi-massive to massive textures. The deposit was highly deformed and metamorphosed during the c. 1.8–1.7 Ga Laxfordian Orogeny. Textural relationships of deformed sulfide minerals, related to early Laxfordian deformation (D1/D2), indicate initial high pressure-low temperature (100 MPa, 150 °C) conditions before reaching peak amphibolite facies metamorphism, as evident from pyrrhotite crossing the brittle/ductile transition prior to chalcopyrite. Late Laxfordian deformation (D3/D4) is marked by local retrograde greenschist facies at low pressure and temperature (<1.2 MPa, <200 °C), recorded by late red sphalerite remobilization. δ34S values from all sulfide minerals have a homogeneous mean of 0.8 ± 0.7‰ (n = 21), consistent with interaction of hydrothermal fluids in the host oceanic basalt-island arc setting envisaged for deposition of the Loch Maree Group. Microprobe analyses of amphiboles record evidence of the original alteration halo associated with the Kerry Road deposit, with a systematic Mg- and Si- enrichment from ferrotschermakite (~150 m) to Mg-hornblende (~90 m) to actinolite (0 m) on approach to the VMS deposit. Furthermore, whole rock geochemistry records a progressive enrichment in Si, Cu, Co, and S, and depletion in Al, Ti, V, Cr, Y and Zr with proximity to the VMS system. These elemental trends, together with amphibole geochemistry, are potentially useful exploration vectors to VMS mineralization in the Loch Maree Group, and in similar highly deformed and metamorphosed terranes elsewhere.
Citation
Drummond , D , Cloutier , J , Boyce , A J & Prave , T 2020 , ' Petrogenesis and geochemical halos of the amphibolite facies, Lower Proterozoic, Kerry Road volcanogenic massive sulfide deposit, Loch Maree Group, Gairloch, NW Scotland ' , Ore Geology Reviews , vol. 124 , 103623 . https://doi.org/10.1016/j.oregeorev.2020.103623
Publication
Ore Geology Reviews
Status
Peer reviewed
DOI
https://doi.org/10.1016/j.oregeorev.2020.103623
ISSN
0169-1368
Type
Journal item
Rights
Copyright © 2020 Elsevier B.V. All rights reserved. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1016/j.oregeorev.2020.103623
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/23369

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter