Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorLund, K
dc.contributor.authorJardine, M
dc.contributor.authorRussell, A J B
dc.contributor.authorDonati, J-F
dc.contributor.authorFares, R
dc.contributor.authorFolsom, C P
dc.contributor.authorJeffers, S V
dc.contributor.authorMarsden, S C
dc.contributor.authorMorin, J
dc.contributor.authorPetit, P
dc.contributor.authorSee, V
dc.date.accessioned2021-06-07T14:30:15Z
dc.date.available2021-06-07T14:30:15Z
dc.date.issued2021-04-01
dc.identifier272951175
dc.identifierf985e635-23f5-48fe-97ac-2a42dd8fce28
dc.identifier000637320100015
dc.identifier85105188336
dc.identifier.citationLund , K , Jardine , M , Russell , A J B , Donati , J-F , Fares , R , Folsom , C P , Jeffers , S V , Marsden , S C , Morin , J , Petit , P & See , V 2021 , ' Field linkage and magnetic helicity density ' , Monthly Notices of the Royal Astronomical Society , vol. 502 , no. 4 , pp. 4903–4910 . https://doi.org/10.1093/mnras/stab305en
dc.identifier.issn0035-8711
dc.identifier.otherJisc: 823846cd2a3a42df99bfdaaf347358f3
dc.identifier.otherORCID: /0000-0002-1466-5236/work/93894076
dc.identifier.otherORCID: /0000-0001-5690-2351/work/139965417
dc.identifier.urihttps://hdl.handle.net/10023/23322
dc.descriptionFunding: MJ and KL acknowledge support from STFC consolidated grant number ST/R000824/1. VS acknowledges funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement no. 682393, AWESoMeStars). JFD acknowledges funding from the European Research Council (ERC) under the H2020 research and innovation programme (grant agreement 740651 NewWorlds). RF acknowledges funding from UAEU startup grant number G00003269.en
dc.description.abstractThe helicity of a magnetic field is a fundamental property that is conserved in ideal MHD. It can be explored in the stellar context by mapping large-scale magnetic fields across stellar surfaces using Zeeman-Doppler imaging. A recent study of 51 stars in the mass range 0.1-1.34 M⊙ showed that the photospheric magnetic helicity density follows a single power law when plotted against the toroidal field energy, but splits into two branches when plotted against the poloidal field energy. These two branches divide stars above and below ∼ 0.5 M⊙. We present here a novel method of visualising the helicity density in terms of the linkage of the toroidal and poloidal fields that are mapped across the stellar surface. This approach allows us to classify the field linkages that provide the helicity density for stars of different masses and rotation rates. We find that stars on the lower-mass branch tend to have toroidal fields that are non-axisymmetric and so link through regions of positive and negative poloidal field. A lower-mass star may have the same helicity density as a higher-mass star, despite having a stronger poloidal field. Lower-mass stars are therefore less efficient at generating large-scale helicity.
dc.format.extent8
dc.format.extent1268566
dc.language.isoeng
dc.relation.ispartofMonthly Notices of the Royal Astronomical Societyen
dc.subjectMethods: analyticalen
dc.subjectStars: magnetic fielden
dc.subjectQB Astronomyen
dc.subjectDASen
dc.subjectMCCen
dc.subject.lccQBen
dc.titleField linkage and magnetic helicity densityen
dc.typeJournal articleen
dc.contributor.sponsorScience & Technology Facilities Councilen
dc.contributor.institutionUniversity of St Andrews. University of St Andrewsen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Applied Mathematicsen
dc.identifier.doi10.1093/mnras/stab305
dc.description.statusPeer revieweden
dc.identifier.urlhttps://arxiv.org/abs/2102.11238en
dc.identifier.grantnumberST/R00824/1en


This item appears in the following Collection(s)

Show simple item record