Primitive permutation groups and strongly factorizable transformation semigroups
Abstract
Let Ω be a finite set and T(Ω) be the full transformation monoid on Ω. The rank of a transformation t in T(Ω) is the natural number |Ωt|. Given a subset A of T(Ω), denote by ⟨A⟩ the semigroup generated by A. Let k be a fixed natural number such that 2 ≤ k ≤ |Ω|. In the first part of this paper we (almost) classify the permutation groups G on Ω such that for all rank k transformations t in T(Ω), every element in St = ⟨G,t⟩ can be written as a product eg, where e is an idempotent in St and g∈G. In the second part we prove, among other results, that if S ≤ T(Ω) and G is the normalizer of S in the symmetric group on Ω, then the semigroup SG is regular if and only if S is regular. (Recall that a semigroup S is regular if for all x∈S there exists y∈S such that x = xyx.) The paper ends with a list of problems.
Citation
Araújo , J , Bentz , W & Cameron , P J 2021 , ' Primitive permutation groups and strongly factorizable transformation semigroups ' , Journal of Algebra , vol. 565 , pp. 513-530 . https://doi.org/10.1016/j.jalgebra.2020.05.023
Publication
Journal of Algebra
Status
Peer reviewed
ISSN
0021-8693Type
Journal article
Rights
Copyright © 2020 Elsevier Inc. All rights reserved. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1016/j.jalgebra.2020.05.023.
Description
Funding: The first author was partially supported by the Fundação para a Ciênciae a Tecnologia (Portuguese Foundation for Science and Technology) through the projects UIDB/00297/2020 (Centro de Matemtica e Aplicaes), PTDC/MAT-PUR/31174/2017, UIDB/04621/2020 and UIDP/04621/2020.Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.