St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Linking computational models to follow the evolution of heated coronal plasma

Thumbnail
View/Open
Reid_2021_MNRAS_Linking_CC.pdf (2.523Mb)
Date
08/2021
Author
Reid, Jack
Cargill, Peter
Johnston, Craig David
Hood, Alan William
Funder
European Research Council
European Research Council
Science & Technology Facilities Council
Grant ID
810218
647214
ST/S000402/1
Keywords
Sun: corona
Sun: magnetic fields
Magnetohydrodynamics (MHD)
Methods: numerical
QB Astronomy
QC Physics
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
A ‘proof of principle’ is presented, whereby the Ohmic and viscous heating determined by a three-dimensional (3D) MHD model of a coronal avalanche are used as the coronal heating input for a series of field-aligned, one-dimensional (1D) hydrodynamic models. Three-dimensional coronal MHD models require large computational resources. For current numerical parameters, it is difficult to model both the magnetic field evolution and the energy transport along field lines for coronal temperatures much hotter than 1MK⁠, because of severe constraints on the time step from parallel thermal conduction. Using the 3D MHD heating derived from a simulation and evaluated on a single field line, the 1D models give coronal temperatures of 1MK and densities 1014--1015m−3 for a coronal loop length of 80Mm⁠. While the temperatures and densities vary smoothly along the field lines, the heating function leads to strong asymmetries in the plasma flows. The magnitudes of the velocities in the 1D model are comparable with those seen in 3D reconnection jets in our earlier work. Advantages and drawbacks of this approach for coronal modelling are discussed.
Citation
Reid , J , Cargill , P , Johnston , C D & Hood , A W 2021 , ' Linking computational models to follow the evolution of heated coronal plasma ' , Monthly Notices of the Royal Astronomical Society , vol. 505 , no. 3 , pp. 4141-4150 . https://doi.org/10.1093/mnras/stab1255
Publication
Monthly Notices of the Royal Astronomical Society
Status
Peer reviewed
DOI
https://doi.org/10.1093/mnras/stab1255
ISSN
1365-2966
Type
Journal article
Rights
Copyright © 2021 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Description
Funding: JR acknowledges the support of the Carnegie Trust for the Universities of Scotland. JR and AWH acknowledge the financial support of STFC through the Consolidated grant, ST/S000402/1, to the University of St Andrews. AWH acknowledges support from ERC Synergy grant ‘The Whole Sun’ (810218). CDJ acknowledges funding from the European Research Council (ERC) under grant agreement No. 647214.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/23271

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter