Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorBiga, Veronica
dc.contributor.authorHawley, Joshua
dc.contributor.authorSoto, Ximena
dc.contributor.authorJohns, Emma
dc.contributor.authorHan, Daniel
dc.contributor.authorBennett, Hayley
dc.contributor.authorAdamson, Antony D
dc.contributor.authorKursawe, Jochen
dc.contributor.authorGlendinning, Paul
dc.contributor.authorManning, Cerys S
dc.contributor.authorPapalopulu, Nancy
dc.date.accessioned2021-05-26T09:30:02Z
dc.date.available2021-05-26T09:30:02Z
dc.date.issued2021-05-01
dc.identifier.citationBiga , V , Hawley , J , Soto , X , Johns , E , Han , D , Bennett , H , Adamson , A D , Kursawe , J , Glendinning , P , Manning , C S & Papalopulu , N 2021 , ' A dynamic, spatially periodic, micro-pattern of HES5 underlies neurogenesis in the mouse spinal cord ' , Molecular Systems Biology , vol. 17 , no. 5 , e9902 . https://doi.org/10.15252/msb.20209902en
dc.identifier.issn1744-4292
dc.identifier.otherPURE: 274358433
dc.identifier.otherPURE UUID: a77fa4af-bc43-4b5d-a5dd-3155fafa4600
dc.identifier.otherRIS: urn:390C0BD611B0073D79C8EF03EDAD4FB4
dc.identifier.otherORCID: /0000-0002-0314-9623/work/94669927
dc.identifier.otherScopus: 85106958936
dc.identifier.otherWOS: 000655479400002
dc.identifier.urihttps://hdl.handle.net/10023/23252
dc.descriptionCM was supported by a Sir Henry Wellcome Fellowship (103986/Z/14/Z) and University of Manchester Presidential Fellowship. VB was supported by a Wellcome Trust Senior Research Fellowship to NP (106185/Z/14/Z). JH (220001/Z/19/Z), EJ (204057/Z/16/Z) and DH (Wellcome Trust Grant No. 215189/Z/19/Z) were supported by Wellcome Trust PhD studentships. JK was supported by Wellcome Trust Senior Research Fellowship to NP and a University of St Andrews Lectureship.en
dc.description.abstractUltradian oscillations of HES Transcription Factors (TFs) at the single-cell level enable cell state transitions. However, the tissue-level organisation of HES5 dynamics in neurogenesis is unknown. Here, we analyse the expression of HES5 ex vivo in the developing mouse ventral spinal cord and identify microclusters of 4?6 cells with positively correlated HES5 level and ultradian dynamics. These microclusters are spatially periodic along the dorsoventral axis and temporally dynamic, alternating between high and low expression with a supra-ultradian persistence time. We show that Notch signalling is required for temporal dynamics but not the spatial periodicity of HES5. Few Neurogenin 2 cells are observed per cluster, irrespective of high or low state, suggesting that the microcluster organisation of HES5 enables the stable selection of differentiating cells. Computational modelling predicts that different cell coupling strengths underlie the HES5 spatial patterns and rate of differentiation, which is consistent with comparison between the motoneuron and interneuron progenitor domains. Our work shows a previously unrecognised spatiotemporal organisation of neurogenesis, emergent at the tissue level from the synthesis of single-cell dynamics.
dc.format.extent27
dc.language.isoeng
dc.relation.ispartofMolecular Systems Biologyen
dc.rightsCopyright © 2021 The Authors. Published under the terms of the CC BY 4.0 license.en
dc.subjectHes5en
dc.subjectNeurogenesisen
dc.subjectNotchen
dc.subjectOscillationsen
dc.subjectPatterningen
dc.subjectQA Mathematicsen
dc.subjectQH301 Biologyen
dc.subjectRC0321 Neuroscience. Biological psychiatry. Neuropsychiatryen
dc.subjectDASen
dc.subject.lccQAen
dc.subject.lccQH301en
dc.subject.lccRC0321en
dc.titleA dynamic, spatially periodic, micro-pattern of HES5 underlies neurogenesis in the mouse spinal corden
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. Applied Mathematicsen
dc.identifier.doihttps://doi.org/10.15252/msb.20209902
dc.description.statusPeer revieweden


This item appears in the following Collection(s)

Show simple item record