St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

On Hölder solutions to the spiral winding problem

Thumbnail
View/Open
Fraser_2021_Nonlinearity_Holder_solutions_CC.pdf (808.1Kb)
Date
07/05/2021
Author
Fraser, Jonathan
Keywords
Spiral
Winding problem
Holder exponents
Assouad dimension
Box dimension
Assousad spectrum
QA Mathematics
T-NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The winding problem concerns understanding the regularity of functions which map a line segment onto a spiral. This problem has relevance in fluid dynamics and conformal welding theory, where spirals arise naturally. Here we interpret 'regularity' in terms of Hölder exponents and establish sharp results for spirals with polynomial winding rates, observing that the sharp Hölder exponent of the forward map and its inverse satisfy a formula reminiscent of Sobolev conjugates. We also investigate the dimension theory of these spirals, in particular, the Assouad dimension, Assouad spectrum and box dimensions. The aim here is to compare the bounds on the Hölder exponents in the winding problem coming directly from knowledge of dimension (and how dimension distorts under Hölder image) with the sharp results. We find that the Assouad spectrum provides the best information, but that even this is not sharp. We also find that the Assouad spectrum is the only 'dimension' which distinguishes between spirals with different polynomial winding rates in the superlinear regime.
Citation
Fraser , J 2021 , ' On Hölder solutions to the spiral winding problem ' , Nonlinearity , vol. 34 , no. 5 , pp. 3251–3270 . https://doi.org/10.1088/1361-6544/abe75e
Publication
Nonlinearity
Status
Peer reviewed
DOI
https://doi.org/10.1088/1361-6544/abe75e
ISSN
0951-7715
Type
Journal article
Rights
Copyright © 2021 IOP Publishing Ltd & London Mathematical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Description
The author was supported by an EPSRC Standard Grant No. (EP/R015104/1) and a Leverhulme Trust Research Project Grant No. (RPG-2019-034).
Collections
  • University of St Andrews Research
URL
https://arxiv.org/abs/1905.07563
URI
http://hdl.handle.net/10023/23185

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter