Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorGaiko-Shcherbak, Aljona
dc.contributor.authorEschenbruch, Julian
dc.contributor.authorKronenberg, Nils M.
dc.contributor.authorTeske, Michael
dc.contributor.authorWolters, Benjamin
dc.contributor.authorSpringer, Ronald
dc.contributor.authorGather, Malte C.
dc.contributor.authorMerkel, Rudolf
dc.contributor.authorHoffmann, Bernd
dc.contributor.authorNoetzel, Erik
dc.date.accessioned2021-04-16T16:30:12Z
dc.date.available2021-04-16T16:30:12Z
dc.date.issued2021-04-12
dc.identifier273832023
dc.identifier06eeb5f3-c385-4166-a96c-8a3a3ceb82b0
dc.identifier85103888206
dc.identifier000644316700001
dc.identifier.citationGaiko-Shcherbak , A , Eschenbruch , J , Kronenberg , N M , Teske , M , Wolters , B , Springer , R , Gather , M C , Merkel , R , Hoffmann , B & Noetzel , E 2021 , ' Cell force-driven basement membrane disruption fuels EGF- and stiffness-induced invasive cell dissemination from benign breast gland acini ' , International Journal of Molecular Sciences , vol. 22 , no. 8 , 3962 . https://doi.org/10.3390/ijms22083962en
dc.identifier.issn1422-0067
dc.identifier.otherJisc: 3da1a74662be45dbba8146bee44e52c9
dc.identifier.otherORCID: /0000-0002-4857-5562/work/92371925
dc.identifier.urihttps://hdl.handle.net/10023/23043
dc.descriptionFunded by the Deutsche Forschungsgesellschaft (DFG, German Research Foundation)-363055819/GRK2415, through SPP1782 within the projects H02384/2 and ME1458/8 and Engineering and Physical Sciences Research Council (EP/P030017/1) and the Alexander von Humboldt Stiftung (Humboldt-Professorship).en
dc.description.abstractLocal basement membrane (BM) disruption marks the initial step of breast cancer invasion. The activation mechanisms of force-driven BM-weakening remain elusive. We studied the mechanical response of MCF10A-derived human breast cell acini with BMs of tuneable maturation to physical and soluble tumour-like extracellular matrix (ECM) cues. Traction force microscopy (TFM) and elastic resonator interference stress microscopy (ERISM) were used to quantify pro-invasive BM stress and protrusive forces. Substrate stiffening and mechanically impaired BM scaffolds induced the invasive transition of benign acini synergistically. Robust BM scaffolds attenuated this invasive response. Additional oncogenic EGFR activation compromised the BMs’ barrier function, fuelling invasion speed and incidence. Mechanistically, EGFR-PI3-Kinase downstream signalling modulated both MMP- and force-driven BM-weakening processes. We show that breast acini form non-proteolytic and BM-piercing filopodia for continuous matrix mechanosensation, which significantly push and pull on the BM and ECM under pro-invasive conditions. Invasion-triggered acini further shear and compress their BM by contractility-based stresses that were significantly increased (3.7-fold) compared to non-invasive conditions. Overall, the highest amplitudes of protrusive and contractile forces accompanied the highest invasiveness. This work provides a mechanistic concept for tumour ECM-induced mechanically misbalanced breast glands fuelling force-driven BM disruption. Finally, this could facilitate early cell dissemination from pre-invasive lesions to metastasize eventually.
dc.format.extent19
dc.format.extent7063336
dc.language.isoeng
dc.relation.ispartofInternational Journal of Molecular Sciencesen
dc.subjectBasement membraneen
dc.subjectMechanobiologyen
dc.subjectMechanically driven cancer progressionen
dc.subjectMechanosensingen
dc.subjectNeoplasm invasionen
dc.subjectBreast cancer invasionen
dc.subjectCell forceen
dc.subjectMechanosensory transductionen
dc.subjectFilopodiaen
dc.subjectQC Physicsen
dc.subjectQH301 Biologyen
dc.subjectRC0254 Neoplasms. Tumors. Oncology (including Cancer)en
dc.subjectDASen
dc.subjectSDG 3 - Good Health and Well-beingen
dc.subject.lccQCen
dc.subject.lccQH301en
dc.subject.lccRC0254en
dc.titleCell force-driven basement membrane disruption fuels EGF- and stiffness-induced invasive cell dissemination from benign breast gland acinien
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Sir James Mackenzie Institute for Early Diagnosisen
dc.contributor.institutionUniversity of St Andrews. Centre for Biophotonicsen
dc.contributor.institutionUniversity of St Andrews. Biomedical Sciences Research Complexen
dc.identifier.doihttps://doi.org/10.3390/ijms22083962
dc.description.statusPeer revieweden
dc.identifier.urlhttps://www.mdpi.com/journal/ijms/special_issues/Biomechanics_Cancer_Progressionen
dc.identifier.grantnumberEP/P030017/1en


This item appears in the following Collection(s)

Show simple item record