St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

An inelastic neutron scattering investigation of the temporal behaviour of the hydrocarbonaceous overlayer of a prototype Fischer-Tropsch to olefins catalyst

Thumbnail
View/Open
Davidson_2021_TiC_AnInelasticNeutronScattering_CC.pdf (1.108Mb)
Date
17/03/2021
Author
Davidson, A.L.
Webb, Paul B.
Parker, S.F.
Lennon, D.
Keywords
Fischer-Tropsch to olefins catalysis
Inelastic neuron scattering
Temperature-programmed oxidation
QD Chemistry
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
A dual sodium and sulfur promoted haematite, representative of a candidate Fischer-Tropsch to olefins (FTO) catalyst, is prepared and contrasted with the performance of an unpromoted hematite sample in the ambient pressure CO hydrogenation reaction at 623 K as a function of time-on-stream (0–24 h). In-situ post-reaction temperature-programmed oxidation measurements show the carbon evolutionary phase of the catalyst conditioning process to be retarded for the FTO catalyst. Ex-situ inelastic neutron scattering measurements show the promoters perturb the formation of a previously described hydrocarbonaceous overlayer. Specifically, whilst the sp3 hybridised C–H modes of the hydrocarbonaceous overlayer are almost unaffected by the additives, the formation of the overlayer’s sp2 hybridised C–H modes are noticeably impeded. The results are discussed in terms of the Na/S promoters disturbing the formation of an ordered hydrocarbonaceous overlayer that is thought to constrain the supply of adsorbed hydrogen atoms, which favours the formation of unsaturated hydrocarbons associated with the FTO process.
Citation
Davidson , A L , Webb , P B , Parker , S F & Lennon , D 2021 , ' An inelastic neutron scattering investigation of the temporal behaviour of the hydrocarbonaceous overlayer of a prototype Fischer-Tropsch to olefins catalyst ' , Topics in Catalysis , vol. First Online . https://doi.org/10.1007/s11244-021-01419-y
Publication
Topics in Catalysis
Status
Peer reviewed
DOI
https://doi.org/10.1007/s11244-021-01419-y
ISSN
1022-5528
Type
Journal article
Rights
Copyright © The Author(s) 2021. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Description
Sasol Ltd., the University of Glasgow and the EPSRC [award reference EP/P505534/1] are thanked for the provision of a postgraduate studentship (ALD). The Royal Society is thanked for the provision of an Industry Fellowship (PBW).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/23005

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter