Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorYim, Chi Ming
dc.contributor.authorPanja, Soumendra
dc.contributor.authorTrainer, Christopher
dc.contributor.authorTopping, Craig
dc.contributor.authorHeil, Christoph
dc.contributor.authorGibbs , Alexandra
dc.contributor.authorMagdysyuk, Oxana
dc.contributor.authorTsurkan, Vladimir
dc.contributor.authorLoidl, Alois
dc.contributor.authorRost, Andreas W.
dc.contributor.authorWahl, Peter
dc.date.accessioned2021-04-08T11:30:07Z
dc.date.available2021-04-08T11:30:07Z
dc.date.issued2021-04-14
dc.identifier.citationYim , C M , Panja , S , Trainer , C , Topping , C , Heil , C , Gibbs , A , Magdysyuk , O , Tsurkan , V , Loidl , A , Rost , A W & Wahl , P 2021 , ' Strain-stabilized (π,π) order at the surface of Fe 1+ x Te ' , Nano Letters , vol. 21 , no. 7 , pp. 2786-2792 . https://doi.org/10.1021/acs.nanolett.0c04821en
dc.identifier.issn1530-6984
dc.identifier.otherPURE: 273020962
dc.identifier.otherPURE UUID: 8c340f84-9a78-457b-b5b3-116a3c97d5be
dc.identifier.otherORCID: /0000-0002-7012-1831/work/92019881
dc.identifier.otherORCID: /0000-0002-8635-1519/work/92020004
dc.identifier.otherScopus: 85104275792
dc.identifier.otherWOS: 000641160500012
dc.identifier.urihttps://hdl.handle.net/10023/22984
dc.descriptionC.M.Y., S.N.P., A.W.R., and P.W. acknowledge support from EPSRC through EP/S005005/1, and C.To. and A.W.R. through EP/P024564/1. C.M.Y. acknowledges additional support from a Shanghai talent program and funding through the Shanghai Pujiang Program (20PJ1408200). C.H. acknowledges support from the Austrian Science Fund (FWF), project no. P 32144-N36, and the VSC4 of the Vienna University of Technology.en
dc.description.abstractA key property of many quantum materials is that their ground state depends sensitively on small changes of an external tuning parameter, e.g., doping, magnetic field, or pressure, creating opportunities for potential technological applications. Here, we explore tuning of the ground state of the nonsuperconducting parent compound, Fe1+xTe, of the iron chalcogenides by uniaxial strain. Iron telluride exhibits a peculiar (π, 0) antiferromagnetic order unlike the (π, π) order observed in the Fe-pnictide superconductors. The (π, 0) order is accompanied by a significant monoclinic distortion. We explore tuning of the ground state by uniaxial strain combined with low-temperature scanning tunneling microscopy. We demonstrate that, indeed under strain, the surface of Fe1.1Te undergoes a transition to a (π, π)-charge-ordered state. Comparison with transport experiments on uniaxially strained samples shows that this is a surface phase, demonstrating the opportunities afforded by 2D correlated phases stabilized near surfaces and interfaces.
dc.format.extent7
dc.language.isoeng
dc.relation.ispartofNano Lettersen
dc.rightsCopyright © 2021 The Author(s). Published by the American Chemical Society. Open Access article licenced under under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.en
dc.subjectUniaxial strainen
dc.subjectIron tellurideen
dc.subjectLow-temparature scanning tunneling microscopyen
dc.subjectCharge orderen
dc.subjectQC Physicsen
dc.subjectDASen
dc.subject.lccQCen
dc.titleStrain-stabilized (π,π) order at the surface of Fe1+xTeen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. Centre for Designer Quantum Materialsen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.identifier.doihttps://doi.org/10.1021/acs.nanolett.0c04821
dc.description.statusPeer revieweden
dc.identifier.grantnumberEP/P024564/1en


This item appears in the following Collection(s)

Show simple item record