The University of St Andrews

Research@StAndrews:FullText >
University of St Andrews Research >
University of St Andrews Research >
University of St Andrews Research >

Please use this identifier to cite or link to this item:
This item has been viewed 3 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
14887_rev_v2.pdf3.01 MBAdobe PDFView/Open
Title: Three-dimensional solutions of the magnetohydrostatic equations : rigidly rotating magnetized coronae in spherical geometry
Authors: Al-Salti, Nasser
Neukirch, Thomas
Keywords: Magnetic fields
Magnetohydrodynamics (MHD)
Stars: magnetic field
Stars: coronae
Stars: activity
Electric-current systems
Solar minimum corona
Magnetostatic atmospheres
Magnetohydrodynamic equilibria
Cylindrical geometry
MHD equilibria
Field lines
M dwarfs
QB Astronomy
Issue Date: Oct-2010
Citation: Al-Salti , N & Neukirch , T 2010 , ' Three-dimensional solutions of the magnetohydrostatic equations : rigidly rotating magnetized coronae in spherical geometry ' Astronomy & Astrophysics , vol 520 , A75 . , 10.1051/0004-6361/201014887
Abstract: Context. Magnetohydrostatic (MHS) equilibria are often used to model astrophysical plasmas, for example, planetary magnetospheres or coronae of magnetized stars. However, finding realistic three-dimensional solutions to the MHS equations is difficult, with only a few known analytical solutions and even finding numerical solution is far from easy. Aims. We extend the results of a previous paper on three-dimensional solutions of the MHS equations around rigidly rotating massive cylinders to the much more realistic case of rigidly rotating massive spheres. An obvious application is to model the closed field line regions of the coronae of rapidly rotating stars. Methods. We used a number of simplifying assumptions to reduce the MHS equations to a single elliptic partial differential equation for a pseudo-potential U, from which all physical quantities, such as the magnetic field, the plasma pressure, and the density, can be derived by differentiation. The most important assumptions made are stationarity in the co-rotating frame of reference, a particular form for the current density, and neglect of outflows. Results. In this paper we demonstrate that standard methods can be used to find numerical solutions to the fundamental equation of the theory. We present three simple different cases of magnetic field boundary conditions on the surface of the central sphere, corresponding to an aligned dipole field, a non-aligned dipole field, and a displaced dipole field. Our results show that it should be possible in the future to use this method without dramatically increasing the demands on computational resources to improve upon potential field models of rotating magnetospheres and coronae.
Version: Postprint
Status: Peer reviewed
ISSN: 0004-6361
Type: Journal article
Rights: This is an author version of an article published in Astronomy and Astrophysics, (c) ESO 2010
Appears in Collections:University of St Andrews Research
Mathematics & Statistics Research

This item is protected by original copyright

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)