St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Niobium based materials for use as current collectors in the anode of solid oxide fuel cells

Thumbnail
View/Open
AnnaLashtabegPhDthesis2004_original_C.pdf (28.23Mb)
Date
2004
Author
Lashtabeg, Anna
Supervisor
Irvine, John T. S.
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
In this work I present the results of my studies on a series of reduced niobium based rutile structures: Nb₂TiO₇ doped with Fe and Zr, Ti₁₋₂ₓCrₓNbₓO₂ solid solution series. Strontium niobates of the stoichiometry Sr₄Nb₂O₉, Sr₂Nb₂O₇, Sr₂Nb₂O₆ and their reduced phases were also investigated, along with CaNb₂O₆ and BaNb₂O₆. Thermal expansion and electronic conductivity of these materials were investigated under oxidising and reducing conditions. Nb₂TiO₇ goes to rutile structure Nb ₁.₃₃Ti₀.₆₇O₄ under reducing conditions, and this has the highest conductivity of all materials investigated at 300 Scm⁻¹ at 900°C with p(O₂)=10⁻²⁰ atm, but the lowest thermal expansion of 3.00±0.05x10⁻⁶ K⁻¹ (100°C-900°C), which is incompatible with the thermal expansion coefficient of the Ni/YSZ anode in the solid oxide fuel cell of 10.3x10⁻⁶ K⁻¹. Doping Nb ₁.₃₃Ti₀.₆₇O₄ decreases its conductivity, but increases its thermal expansion to a maximum of 6.3x10⁻⁶ K⁻¹ for Nb₁.₃₄₇Ti₀.₆₃₉Fe₀.₀₀₁₄O₄. The Ti₁₋₂ₓCrₓNbₓO₂ solid solution series shows a maximum thermal expansion of 8.5x10⁻⁶ K⁻¹ for x=0.1 which then drops with increasing x to 5.6x10⁻⁶ K⁻¹ for x=0.5. The conductivity of these samples, however, reaches a maximum of ~20Scm⁻¹ at p(O₂)=10⁻²⁰ atm at 900°C for x=0.1-0.3, then drops to ~10 Scm⁻¹ for x=0.4 and -6 Scm⁻¹ for x=0.5. Sr₄Nb₂O₉, Sr₂Nb₂O₇, SrNb₂O₆, CaNb₂O₆, and BaNb₂O₆, all show fairly poor electronic conductivities in air and 5%H₂/Ar (p(O₂)=10⁻²⁰ atm) at 900°C which make them unsuitable for use in the anode of the SOFC. Structurally they are very stable to reducing conditions up to 1200°-1300°C in 5% H₂/Ar compared to Nb₂TiO₇ whose structure changes to rutile upon reduction. In the systems studied, there are two types of conductivity that dominate. BaNb₂O₆ or Sr₂Nb₂O₇ show a linear dependence over the p(O₂) range with simple defect equilibrium and fair kinetics. The rutile Ti₁₋₂ₓCrₓNbₓO₂ series, on the other hand, shows complex phase transitions throughout the p(O₂) range with kinetically limited reduction.
Type
Thesis, PhD Doctor of Philosopy
Collections
  • Chemistry Theses
URI
http://hdl.handle.net/10023/21886

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter