St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimisation of performance of tin oxide based anodes for high energy density lithium batteries

Thumbnail
View/Open
PierrotAttidekouPhDthesis.pdf (25.26Mb)
Date
22/06/2005
Author
Attidekou, Pierrot S.
Supervisor
Irvine, John T. S.
Funder
Kabushiki-gaisha GS Yuasa Kōporēshon (Firm)
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The goal of this work was to synthesise and investigate a tin based oxide compound, SnP₂O₇ and its doped analogues, as a potential negative electrode for lithium battery. SnP₂O₇ has two polymorphs: the cubic and the layered forms. It has been proven that the cubic form has a better performance on cycling compared to the layered. This work has focused on the cubic form in order to understand the mechanisms occurring upon charge and discharge in order to improve the capacity and the cycling ability. The achievement of this task requires several steps. SnP₂O₇ was synthesised and fully characterised structurally and electrochemically. The structural characterisation has elucidated the complexity of the material that crystallises in a 3x3x3 superstructure with the presence of nanodomains. Electrochemical characterisation has shown that on insertion of lithium into the material, finely dispersed tin nanoparticles are formed in an amorphous lithiated pyrophosphate matrix before the tin particles alloy with lithium providing the useful capacity of the battery. This material displays an irreversible capacity of 965mAh/g and a reversible capacity of 365 mAh/g. The overall reaction of lithium toward SnP₂O₇ was divided into 3 different zones and the kinetic and thermodynamic features evaluated. The thermodynamic study made on a cell with SnP₂O₇ electrode has provided a very high value of entropy upon the conversion of SnP₂O₇ to metallic tin plus lithiated pyrophosphate matrix. The lithiated phosphate matrix form is then reduced to another lithiated phosphate matrix, which is stable with an unusual oxidation state of phosphorus that we believe to be Pᴵⱽ. The lithium diffusion was estimated as 8x10⁻¹⁵cm²/s and matches those obtained for other lithium battery materials. The addition of borate to the tin pyrophosphate system such as (SnO₂:B₂O₃)[sub](y/2)/(SnP₂O₇)[sub](1-y/2) was studied in order to lighten the matrix and increase the specific capacity and to evaluate the role of the matrix toward capacity retention. As it has been shown that amorphous materials often cycle better than the crystalline tin composite oxides, the addition of borate should be beneficial due to the decrease in crystallinity. This study has revealed upon substitution 3 different phase domains that were characterised to be crystalline up to y = 0.19, a mix of crystalline and amorphous (0.25 < y < 1.75) and a fully amorphous region for high borate content (y > 1.75). At all levels of substitution there was a decrease in both irreversible and reversible capacity. The best capacity of borate doped samples was found in the low borate crystalline region. Therefore borate appears not to be a suitable matrix for lithium batteries. Titanium was added to SnP₂O₇ to see the effect of a smaller cation in the system. Titanium substitution has shown a co-existence of different chemistry types such as both alloying and non-alloying processes for Sn₁₋ₓTiₓP₂O₇ system. Pure titanium pyrophosphate has shown complex electrochemistry and seems to form a transition metal oxide in a phosphate matrix, with additional formation of SEI that was depicted by HRTEM. The electrochemistry has shown formation of several different linephases, biphasic regions and solid solution transformations. The best capacity found was for composition with y = 0.15, which has shown an increase of the reversible capacity of 10% over pure SnP₂O₇.
DOI
https://doi.org/10.17630/sta/54
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Chemistry Theses
URI
http://hdl.handle.net/10023/21769

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter