St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Determining solubility for finitely generated groups of PL homeomorphisms

Thumbnail
View/Open
infiniteDescent33.pdf (260.5Kb)
Date
19/07/2021
Author
Bleak, Collin
Brough, Tara
Hermiller, Susan
Funder
EPSRC
Grant ID
EP/H011978/1
Keywords
Piecewise linear homeomorphism
Thompson's group
Soluble
Membership problem
QA Mathematics
T-NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The set of finitely generated subgroups of the group PL+(I) of orientation-preserving piecewise-linear homeomorphisms of the unitinterval includes many important groups, most notably R. Thompson’s group F. Here, we show that every finitely generated subgroup G < PL+(I) is either soluble, or contains an embedded copy of the finitely generated, non-soluble Brin-Navas group B, affirming a conjecture of the first author from 2009. In the case that G is soluble, we show the derived length of G is bounded above by the number of breakpoints of any finite set of generators. We specify a set of ‘computable’ subgroups of PL+(I) (which includes R. Thompson’s group F) and give an algorithm which determines whether or not a given finite subset X of such a computable group generates a soluble group. When the group is soluble, the algorithm also determines the derived length of ⟨X⟩. Finally,we give a solution of the membership problem for a particular familyof finitely generated soluble subgroups of any computable subgroup of PL+(I).
Citation
Bleak , C , Brough , T & Hermiller , S 2021 , ' Determining solubility for finitely generated groups of PL homeomorphisms ' , Transactions of the American Mathematical Society , vol. 374 , no. 10 , pp. 6815-6837 . https://doi.org/10.1090/tran/8421
Publication
Transactions of the American Mathematical Society
Status
Peer reviewed
DOI
https://doi.org/10.1090/tran/8421
ISSN
0002-9947
Type
Journal article
Rights
Copyright © 2021 American Mathematical Society. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at http://www.ams.org/journals/tran/
Description
Funding: The first and second authors were partially supported by EPSRC grant EP/H011978/1. The third author was partially supported by grants from the Simons Foundation (#245625) and the National Science Foundation (DMS-1313559)
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/21656

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter