Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorMann, Peter Stephen
dc.contributor.authorSmith, V Anne
dc.contributor.authorMitchell, John B. O.
dc.contributor.authorDobson, Simon Andrew
dc.date.accessioned2021-03-11T13:30:04Z
dc.date.available2021-03-11T13:30:04Z
dc.date.issued2021-01-25
dc.identifier272145783
dc.identifierc9c89a1d-2cc8-453f-88f6-63b6a4641e84
dc.identifier85100406500
dc.identifier000612141200008
dc.identifier.citationMann , P S , Smith , V A , Mitchell , J B O & Dobson , S A 2021 , ' Percolation in random graphs with higher-order clustering ' , Physical Review. E, Statistical, nonlinear, and soft matter physics , vol. 103 , no. 1 , 012313 . https://doi.org/10.1103/PhysRevE.103.012313en
dc.identifier.issn1539-3755
dc.identifier.otherORCID: /0000-0002-0379-6097/work/89627240
dc.identifier.otherORCID: /0000-0002-0487-2469/work/89627950
dc.identifier.otherORCID: /0000-0001-9633-2103/work/89628343
dc.identifier.urihttps://hdl.handle.net/10023/21613
dc.descriptionFunding: We acknowledge the School of Chemistry and the School of Biology of the University of St Andrews for the funding contributions for this work.en
dc.description.abstractPercolation theory can be used to describe the structural properties of complex networks using the generating function formulation. This mapping assumes that the network is locally treelike and does not contain short-range loops between neighbors. In this paper we use the generating function formulation to examine clustered networks that contain simple cycles and cliques of any order. We use the natural generalization to the Molloy-Reed criterion for these networks to describe their critical properties and derive an approximate analytical description of the size of the giant component, providing solutions for Poisson and power-law networks. We find that networks comprising larger simple cycles behave increasingly more treelike. Conversely, clustering composed of larger cliques increasingly deviate from the treelike solution, although the behavior is strongly dependent on the degree-assortativity.
dc.format.extent11
dc.format.extent648994
dc.language.isoeng
dc.relation.ispartofPhysical Review. E, Statistical, nonlinear, and soft matter physicsen
dc.subjectQA75 Electronic computers. Computer scienceen
dc.subjectQD Chemistryen
dc.subjectQH301 Biologyen
dc.subjectT-NDASen
dc.subject.lccQA75en
dc.subject.lccQDen
dc.subject.lccQH301en
dc.titlePercolation in random graphs with higher-order clusteringen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. Office of the Principalen
dc.contributor.institutionUniversity of St Andrews. St Andrews Centre for Exoplanet Scienceen
dc.contributor.institutionUniversity of St Andrews. Centre for Biological Diversityen
dc.contributor.institutionUniversity of St Andrews. Scottish Oceans Instituteen
dc.contributor.institutionUniversity of St Andrews. Institute of Behavioural and Neural Sciencesen
dc.contributor.institutionUniversity of St Andrews. School of Biologyen
dc.contributor.institutionUniversity of St Andrews. St Andrews Bioinformatics Uniten
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.contributor.institutionUniversity of St Andrews. Biomedical Sciences Research Complexen
dc.contributor.institutionUniversity of St Andrews. School of Computer Scienceen
dc.contributor.institutionUniversity of St Andrews. Sir James Mackenzie Institute for Early Diagnosisen
dc.identifier.doi10.1103/PhysRevE.103.012313
dc.description.statusPeer revieweden
dc.identifier.urlhttps://arxiv.org/abs/2006.06744en


This item appears in the following Collection(s)

Show simple item record