St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unsynchronized evolution of salinity and pH of a Permian alkaline lake influenced by hydrothermal fluids : a multi-proxy geochemical study

Thumbnail
View/Open
Liuwen_2020_CG_Salinity_AAM.pdf (2.474Mb)
Date
20/05/2020
Author
Xia, Liuwen
Cao, Jian
Stueeken, Eva E.
Zhi, Dongming
Wang, Tingting
Li, Wenwen
Keywords
Alkaline soda lake
Nitrogen isotopes
Hydrothermal fluids
Reedmergnerite
Junggar Basin
Lower Permian Fengcheng Formation
GE Environmental Sciences
DAS
Metadata
Show full item record
Abstract
Hyperalkaline waters display unusually high productivity, which makes them prime targets in the search for life elsewhere in the solar system. However, the formation mechanisms of alkaline waters are not well understood, because the response of biogeochemical proxies to these conditions is poorly constrained. To address this issue, we assessed the influence of hydrothermal fluids on the salinity and pH of alkaline lakes based on a case study of an early Permian paleo-alkaline lake (~290 Ma; Fengcheng Formation) in the Mahu Sag, northwestern Junggar Basin, China. Multiple proxies indicate that hydrothermal fluids in the central salt rock and marginal tuff–mudstone areas of the Fengcheng Formation were affected by deep and shallow hydrothermal fluids, respectively. A small part of the transitional area was affected by hydrothermal fluids with a hybrid nature. The hydrothermal fluid activity gradually weakened up-section in all areas while salinity (inferred from carbon and oxygen isotopes) increased and pH (inferred from nitrogen isotopes and mineralogy) decreased from hyperalkaline (>9.25) to moderately alkaline conditions. These trends suggest that hyperalkalinity was largely driven by hydrothermal processes. In contrast, evaporation, which dominated towards the end of the lake's lifetime, maintained an elevated pH but did evidently not have a similarly strong effect as hydrothermal fluids. Our data suggest that hydrothermal activity and evaporation in closed lacustrine basins have the potential to create extreme conditions for the formation of alkaline lakes. The evolution of salinity and pH may not necessarily be synchronized.
Citation
Xia , L , Cao , J , Stueeken , E E , Zhi , D , Wang , T & Li , W 2020 , ' Unsynchronized evolution of salinity and pH of a Permian alkaline lake influenced by hydrothermal fluids : a multi-proxy geochemical study ' , Chemical Geology , vol. 541 , 119581 . https://doi.org/10.1016/j.chemgeo.2020.119581
Publication
Chemical Geology
Status
Peer reviewed
DOI
https://doi.org/10.1016/j.chemgeo.2020.119581
ISSN
0009-2541
Type
Journal article
Rights
Copyright © 2020 Elsevier B.V. All rights reserved. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1016/j.chemgeo.2020.119581
Description
We thank the editor Dr. Hailiang Dong and three anonymous reviewers for their insightful comments and suggestions which greatly improved the manuscript. We thank technical staffs from the Research Institute of Experiment and Testing and Research Institute of Petroleum Exploration and Development of the PetroChina Xinjiang Oilfield Company for their cooperation during this study. This work was jointly funded by National Natural Science Foundation of China (Grant No. 41830425), National Science and Technology Major Project of China (Grant No. 2016ZX05003-005), and PetroChina Science and Technology Major Project (Grant No. 2017E-0401).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/21567

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter