St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

A potential all-electronic route to the charge-density-wave phase in monolayer vanadium diselenide

Thumbnail
View/Open
Trott_2021_A_potential_all_electronic_CommPhys_4_37_CCBY.pdf (774.6Kb)
Date
26/02/2021
Author
Trott, Matthew James
Hooley, Chris
Funder
EPSRC
Grant ID
EP/R031924/1
Keywords
QC Physics
TK Electrical engineering. Electronics Nuclear engineering
T-DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The transition metal dichalcogenides offer significant promise for the tunable realisation and application of correlated electronic phases. However, tuning their properties requires an understanding of the physical mechanisms underlying their experimentally observed ordered phases, and in particular the extent to which lattice vibrations are a necessary ingredient. Here we present a potential mechanism for charge-density-wave formation in monolayers of vanadium diselenide in which the key role at low energies is played by a combination of electron–electron interactions and nesting. There is a competition between superconducting and density-wave fluctuations as sections of the Fermi surface are tuned to perfect nesting. This competition leads to charge-density-wave order when the effective Heisenberg exchange interaction is comparable to the effective Coulomb repulsion. When all effective interactions are purely repulsive, it results instead in d-wave superconductivity. We discuss the possible role of lattice vibrations in enhancing the effective Heisenberg exchange during the earlier stages of the renormalisation group flow.
Citation
Trott , M J & Hooley , C 2021 , ' A potential all-electronic route to the charge-density-wave phase in monolayer vanadium diselenide ' , Communications Physics , vol. 4 , 37 . https://doi.org/10.1038/s42005-021-00544-0
Publication
Communications Physics
Status
Peer reviewed
DOI
https://doi.org/10.1038/s42005-021-00544-0
ISSN
2399-3650
Type
Journal article
Rights
Copyright © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Description
Funding: MJT acknowledges financial support from the CM-CDT under EPSRC (UK) grant number EP/L015110/1. CAH acknowledges financial support from the EPSRC (UK), grant number EP/R031924/1.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/21541

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter