The University of St Andrews

Research@StAndrews:FullText >
Chemistry (School of) >
Chemistry >
Chemistry Theses >

Please use this identifier to cite or link to this item:
This item has been viewed 13 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
SeanJensenPhDThesis.pdf31.15 MBAdobe PDFView/Open
Title: The assembly of molecular networks at surfaces : towards novel enantioselective heterogeneous catalysts
Authors: Jensen, Sean
Supervisors: Baddeley, Christopher J.
Keywords: Enantioselective catalysis
Hydrogen bonding networks
Metal-organic coordination networks
Covalent networks
Surface-confined reactions
Supramolecular chemistry
Issue Date: 2010
Abstract: Understanding the supramolecular interactions governing the self-assembly of molecular building blocks upon surfaces is fundamental to the design of new devices such as sensors or catalysts. Successful heterogeneous enantioselective catalysts have relied upon the adsorption of ‘chiral modifiers’, usually chiral amino acids, onto reactive metal surfaces. One of the most researched examples is the hydrogenation of β-ketoesters using nickel-based catalysts. The stability of the chiral modifiers upon catalyst surfaces is a major obstacle to the industrial scale-up of this reaction. In this study, the replacement of conventional modifiers with porous, chiral and functionalised self-assembled networks is investigated. Perylene-3,4,9,10-tetracarboxylic diimide (PTCDI) and melamine (1,3,5-triazine,-2,4,6-triamine) have been shown to form hydrogen bonded networks on Ag-Si(111)√3x√3R30° in ultra-high vacuum (UHV) and Au(111) substrates in UHV and ambient conditions, these networks are capable of hosting guest molecules. These networks are investigated further in this study. In UHV, the behaviour of the components and network formation on Ni(111) is probed using scanning tunnelling microscopy (STM) and temperature-programmed desorption (TPD). The stability of the PTCDI-melamine network on Au(111) was analysed using TPD. Metal coordination interactions between each of the network components and nickel upon the Au(111) surface were examined by STM before testing the ability of the network to act as a template for metal growth. Finally, a number of polymerisation reactions are investigated with a view to replacing chiral modifiers with porous, chiral, functionalised covalent networks. Periodic covalent networks should possess the greater chemical and thermal stability required for more widespread use. In UHV and ambient conditions, STM is used to monitor the progress of surface-confined reactions on Au(111) and characterise the resultant covalent structures.
Other Identifiers:
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Chemistry Theses

This item is protected by original copyright

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)