St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesis and polymorphism of mixed aluminium-gallium oxides

Thumbnail
View/Open
Cook_2020_IC_Synthesis_AAM.pdf (1.469Mb)
Date
24/02/2020
Author
Cook, Daniel S.
Hooper, Joseph Edward
Dawson, Daniel McLean
Fisher, Janet M.
Thompsett, David
Ashbrook, Sharon E.
Walton, Richard I.
Funder
EPSRC
European Research Council
The Royal Society
Grant ID
EP/M022501/1
614290 - EXONMR
WM150021
Keywords
QD Chemistry
DAS
Metadata
Show full item record
Abstract
The synthesis of a new solidsolution of the oxyhydroxide Ga5–xAlxO7(OH) isinvestigated via solvothermalreaction between gallium acetylacetonate and aluminium isopropoxide in1,4-butanediol at 240 °C. A limited compositional range 0 ≤ x ≤ 1.5 is produced, with the hexagonalunit cell parameters refined from powder X-ray diffraction (XRD) showing alinear contraction in unit cell volume with increasing Al content. Solid-state 27Aland 71Ga NMR spectroscopy show a strong preference for Ga to occupythe tetrahedral sites and Al to occupy the octahedral sites. Using isopropanolas the solvent, g-Ga2–xAlxO3defect spinel solid solutions with x ≤ 1.8 can be prepared at 240 °C in24 hours. These materials are nanocrystalline, as evidenced by their broaddiffraction profiles, but the refined cubic lattice parameter shows a linearrelationship with the Ga:Al content and solid-state NMR spectroscopy again showsa preference for Al to occupy the octahedral sites. Thermal decomposition ofthe Ga5–xAlxO7(OH)occurs via poorly ordered materials that resemble e-Ga2–xAlxO3and k-Ga2–xAlxO3,but g-Ga2–xAlxO3transforms above 750 °C to monoclinic b-Ga2–xAlxO3for 0 ≤ x ≤ 1.3 and to hexagonal a-Ga2–xAlxO3for x = 1.8, with intermediate compositions 1.3 < x < 1.8 giving mixturesof the aand b polymorphs.Solid-state NMR spectroscopy shows only the expected octahedral Al for a-Ga2–xAlxO3and, for b-Ga2–xAlxO3,the ~1:2 ratio of tetrahedral:octahedral Al is in good agreement with Rietveldanalysis of the average structures against powder XRD data. Relative energiescalculated by periodic density functional theory (DFT) confirm that there is a~5.2 kJ mol–1 penalty for tetrahedral rather than octahedral Al inGa5–xAlxO7(OH), whereas this penalty is muchlower (~2.0 kJ mol–1) for b-Ga2–xAlxO3,in good qualitative agreement with the experimental NMR spectra.
Citation
Cook , D S , Hooper , J E , Dawson , D M , Fisher , J M , Thompsett , D , Ashbrook , S E & Walton , R I 2020 , ' Synthesis and polymorphism of mixed aluminium-gallium oxides ' , Inorganic Chemistry , vol. Article ASAP . https://doi.org/10.1021/acs.inorgchem.9b03459
Publication
Inorganic Chemistry
Status
Peer reviewed
DOI
https://doi.org/10.1021/acs.inorgchem.9b03459
ISSN
0020-1669
Type
Journal article
Rights
Copyright © 2020 American Chemical Society. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1021/acs.inorgchem.9b03459
Description
DSC is grateful to the EPSRC for award of an industrial CASE studentship, partly funded by Johnson Matthey plc. SEA, DMD and JEH thank the ERC (EU FP7 Consolidator Grant 614290 “EXONMR”) for funding. SEA would also like to thank the Royal Society and Wolfson Foundation for a merit award.
Collections
  • University of St Andrews Research
URL
https://pubs.acs.org/doi/10.1021/acs.inorgchem.9b03459?goto=supporting-info
URI
http://hdl.handle.net/10023/21497

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter