Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorElsden, Thomas
dc.contributor.authorWright, Andrew
dc.date.accessioned2021-02-19T00:36:19Z
dc.date.available2021-02-19T00:36:19Z
dc.date.issued2020-08
dc.identifier270051414
dc.identifier4a9e6c18-a91e-4748-943c-edc07deb9f71
dc.identifier85089889289
dc.identifier000577125000069
dc.identifier.citationElsden , T & Wright , A 2020 , ' Evolution of high-m poloidal Alfvén waves in a dipole magnetic field ' , Journal of Geophysical Research: Space Physics , vol. 125 , no. 8 , e2020JA028187 . https://doi.org/10.1029/2020JA028187en
dc.identifier.issn2169-9380
dc.identifier.otherORCID: /0000-0002-9877-1457/work/80257617
dc.identifier.otherORCID: /0000-0002-1910-2010/work/80257965
dc.identifier.urihttps://hdl.handle.net/10023/21457
dc.descriptionFunding: Leverhulme Trust. Grant Number: ECF‐2019‐155; UKRI Science and Technology Facilities Council (STFC) Grant Number: ST/N000609/1.en
dc.description.abstractWe investigate how initially high-m, poloidal Alfvén waves evolve using a numerical model solving the ideal, cold, linear magnetohydrodynamic (MHD) equations in a 2-D dipole coordinate system. The curved magnetic geometry provides a key difference between the poloidal and toroidal Alfvén frequencies of any one field line. A polarization rotation from poloidal toward toroidal predicted from the Cartesian box model theory still occurs but now with the waves following contours of Alfvén frequency, which moves the Alfvén wave across field lines. The structure of these contours depends on the harmonic mode along the field line and the equilibrium. We find that the amplitude peak of the poloidal mode moves significantly radially outward in time. When the typically observed azimuthal phase motion of such waves is included, hodograms show a polarization rotation from purely poloidal to a mixed poloidal/toroidal polarization at all locations. Such features could be used to help interpret satellite observations of Pc4-5 poloidal ultralow frequency (ULF) waves in Earth's magnetosphere.
dc.format.extent10482993
dc.language.isoeng
dc.relation.ispartofJournal of Geophysical Research: Space Physicsen
dc.subjectAlfven wavesen
dc.subjecthigh-men
dc.subjectmagnetosphereen
dc.subjectMHDen
dc.subjectsimulationen
dc.subjectULF wavesen
dc.subjectGE Environmental Sciencesen
dc.subjectQB Astronomyen
dc.subjectQC Physicsen
dc.subjectAquatic Scienceen
dc.subjectForestryen
dc.subjectSoil Scienceen
dc.subjectGeophysicsen
dc.subjectOceanographyen
dc.subjectEcologyen
dc.subjectWater Science and Technologyen
dc.subjectAtmospheric Scienceen
dc.subjectGeochemistry and Petrologyen
dc.subjectEarth-Surface Processesen
dc.subjectEarth and Planetary Sciences (miscellaneous)en
dc.subjectPalaeontologyen
dc.subjectSpace and Planetary Scienceen
dc.subjectDASen
dc.subject.lccGEen
dc.subject.lccQBen
dc.subject.lccQCen
dc.titleEvolution of high-m poloidal Alfvén waves in a dipole magnetic fielden
dc.typeJournal articleen
dc.contributor.sponsorScience & Technology Facilities Councilen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Applied Mathematicsen
dc.identifier.doi10.1029/2020JA028187
dc.description.statusPeer revieweden
dc.date.embargoedUntil2021-02-19
dc.identifier.grantnumberST/N000609/1en


This item appears in the following Collection(s)

Show simple item record