Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorDholakia, Kishan
dc.contributor.authorDrinkwater, Bruce W.
dc.contributor.authorRitsch-Marte, Monika
dc.date.accessioned2021-02-17T00:39:37Z
dc.date.available2021-02-17T00:39:37Z
dc.date.issued2020-09
dc.identifier.citationDholakia , K , Drinkwater , B W & Ritsch-Marte , M 2020 , ' Comparing acoustic and optical forces for biomedical research ' , Nature Reviews Physics , vol. 2 , no. 9 , pp. 480–491 . https://doi.org/10.1038/s42254-020-0215-3en
dc.identifier.issn2522-5820
dc.identifier.otherPURE: 269925896
dc.identifier.otherPURE UUID: b9f4e061-659b-44b0-b828-24be4a7fc6eb
dc.identifier.otherScopus: 85089567961
dc.identifier.otherWOS: 000562894800001
dc.identifier.urihttp://hdl.handle.net/10023/21441
dc.descriptionK.D. thanks the UK Engineering and Physical Sciences Research Council for funding (grant number EP/P030017/1). B.W.D. gratefully acknowledges funding from the Wolfson Foundation and the Royal Society. M.R.-M. gratefully acknowledges support from the Austrian Science Fund FWF (SFB-project F6806-N36).en
dc.description.abstractThe application of acoustic and optical waves to exert non-contact forces on microscopic and mesoscopic objects has grown considerably in importance in the past few decades. Different physical principles govern the acoustic and optical forces, leading to diverse biomedical applications. Biocompatibility is crucial, and useful optical and acoustic forces can be applied in devices that maintain local heating to acceptable levels. Current acoustic and optical devices work on complementary length scales, with both modalities having useful capabilities at the scale of the cell. Optical devices also cover subcellular scales and acoustic devices also cover supercellular scales. This complementarity has led to the emergence of multimode manipulation, often with integrated imaging. In this Technical Review, we provide an overview of optical and acoustic forces, before comparing and contrasting the use of these modalities, or combinations thereof, in terms of sample manipulation and suitability for biomedical studies. We conclude with our perspective on the applications in which we expect to see notable developments in the near future.
dc.language.isoeng
dc.relation.ispartofNature Reviews Physicsen
dc.rightsCopyright © 2020 the Author(s). This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1038/s42254-020-0215-3en
dc.subjectQC Physicsen
dc.subjectQH301 Biologyen
dc.subjectPhysics and Astronomy(all)en
dc.subjectT-NDASen
dc.subject.lccQCen
dc.subject.lccQH301en
dc.titleComparing acoustic and optical forces for biomedical researchen
dc.typeJournal articleen
dc.description.versionPostprinten
dc.contributor.institutionUniversity of St Andrews.School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews.Sir James Mackenzie Institute for Early Diagnosisen
dc.contributor.institutionUniversity of St Andrews.Centre for Biophotonicsen
dc.contributor.institutionUniversity of St Andrews.Biomedical Sciences Research Complexen
dc.identifier.doihttps://doi.org/10.1038/s42254-020-0215-3
dc.description.statusPeer revieweden
dc.date.embargoedUntil2021-02-17
dc.identifier.urlhttps://www.nature.com/articles/s42254-020-0241-1en


This item appears in the following Collection(s)

Show simple item record