Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorTrainer, C.
dc.contributor.authorSongvilay, M.
dc.contributor.authorQureshi, N.
dc.contributor.authorStunault, A.
dc.contributor.authorYim, C. M.
dc.contributor.authorRodriguez, E. E.
dc.contributor.authorHeil, C.
dc.contributor.authorTsurkan, V
dc.contributor.authorGreen, M. A.
dc.contributor.authorLoidl, A.
dc.contributor.authorWahl, P.
dc.contributor.authorStock, C.
dc.date.accessioned2021-02-04T16:30:18Z
dc.date.available2021-02-04T16:30:18Z
dc.date.issued2021-01-06
dc.identifier.citationTrainer , C , Songvilay , M , Qureshi , N , Stunault , A , Yim , C M , Rodriguez , E E , Heil , C , Tsurkan , V , Green , M A , Loidl , A , Wahl , P & Stock , C 2021 , ' Magnetic surface reconstruction in the van der Waals antiferromagnet Fe 1+x Te ' , Physical Review B , vol. 103 , no. 2 , 024406 . https://doi.org/10.1103/PhysRevB.103.024406en
dc.identifier.issn2469-9950
dc.identifier.otherPURE: 272467337
dc.identifier.otherPURE UUID: 83fdb141-4e8c-4d2d-bccc-c2221753c354
dc.identifier.otherBibtex: ISI:000605110200002
dc.identifier.otherScopus: 85099303612
dc.identifier.otherORCID: /0000-0002-8635-1519/work/87404172
dc.identifier.otherWOS: 000605110200002
dc.identifier.urihttps://hdl.handle.net/10023/21377
dc.descriptionWe acknowledge financial support from the EPSRC (EP/R031924/1 and EP/R032130/1) and NIST Center for Neutron Research. C.H. acknowledges support by the Austrian Science Fund (FWF) Project No. P32144-N36 and the VSC4 of the Vienna University of Technologyen
dc.description.abstractFe1+xTe is a two-dimensional van der Waals antiferromagnet that becomes superconducting on anion substitution on the Te site. The properties of the parent phase of Fe1+xTe are sensitive to the amount of interstitial iron situated between the iron-tellurium layers. Fe1+xTe displays collinear magnetic order coexisting with low-temperature metallic resistivity for small concentrations of interstitial iron x and helical magnetic order for large values of x. While this phase diagram has been established through scattering [see, for example, E. E. Rodriguez et al., Phys. Rev. B 84, 064403 (2011); S. Rossler et al., ibid. 84, 174506 (2011)], recent scanning tunneling microscopy measurements [C. Trainer et al., Sci. Adv. 5, eaav3478 (2019)] have observed a different magnetic structure for small interstitial iron concentrations x with a significant canting of the magnetic moments along the crystallographic c axis of θ = 28° ± 3°. In this paper, we revisit themagnetic structure of Fe1.09Te using spherical neutron polarimetry and scanning tunneling microscopy to search for this canting in the bulk phase, and we compare surface and bulk magnetism. The results show that the bulk magnetic structure of Fe1.09Te is consistent with collinear in-plane order (θ= 0 with an error of ∼ 5°). Comparison with scanning tunneling microscopy on a series of Fe1+xTe samples reveals that the surface exhibits a magnetic surface reconstruction with a canting angle of the spins of θ = 29.8°. We suggest that this is a consequence of structural relaxation of the surface layer resulting in an out-of-plane magnetocrystalline anisotropy. The magnetism in Fe1+xTe displays different properties at the surface when the symmetry constraints of the bulk are removed.
dc.format.extent10
dc.language.isoeng
dc.relation.ispartofPhysical Review Ben
dc.rightsCopyright ©2021 American Physical Society. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the final published version of the work, which was originally published at https://doi.org/10.1103/PhysRevB.103.024406.en
dc.subjectQC Physicsen
dc.subjectTK Electrical engineering. Electronics Nuclear engineeringen
dc.subjectNDASen
dc.subject.lccQCen
dc.subject.lccTKen
dc.titleMagnetic surface reconstruction in the van der Waals antiferromagnet Fe1+xTeen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Centre for Designer Quantum Materialsen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.identifier.doihttps://doi.org/10.1103/PhysRevB.103.024406
dc.description.statusPeer revieweden
dc.identifier.grantnumberEP/R031924/1en


This item appears in the following Collection(s)

Show simple item record