St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ab initio molecular dynamics investigation of beryllium complexes

Thumbnail
View/Open
pubRaymond_CPMD_Be.pdf (1009.Kb)
Date
04/02/2020
Author
Raymond, Onyekachi
Buehl, Michael
Lane, Joseph
Henderson, William
Brothers, Penelope
Plieger, Paul
Keywords
Beryllium
Speciation
Ab initio molecular dynamics
CPMD
Hydrolysis
QD Chemistry
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Structures of aqueous [Be(H2O)4]2+, its outer-sphere and inner-sphere complexes with F-, Cl- and SO42-, as well as dinuclear complexes with a [Be(κ-OH)(κ-SO4)]+ core have been studied through Car-Parrinello molecular dynamics (CPMD) simulations with the BLYP functional. According to constrained CPMD/BLYP simulations and pointwise thermodynamic integration, the free energy of deprotonation of [Be(H2O)4]2+ and its binding free energy with F- are 9.6 kcal mol-1 and -6.2 kcal mol-1, respectively, in good accord with available experimental data. The computed activation barriers for replacing a water ligand in [Be(H2O)4]2+ with F- and SO42-, 10.9 kcal mol-1 and 13.6 kcal mol-1, respectively, are also in good qualitative agreement with available experimental data. These ligand substitution reactions are indicated to follow associative interchange mechanisms with backside (SN2-like) attack of the anion relative to the aquo ligand it is displacing. Outperforming static DFT computations of the salient kinetic and thermodynamic quantities involving simple polarizable continuum solvent models, CPMD simulations are validated as a promising tool to study structures and speciation of beryllium complexes in aqueous solution.
Citation
Raymond , O , Buehl , M , Lane , J , Henderson , W , Brothers , P & Plieger , P 2020 , ' Ab initio molecular dynamics investigation of beryllium complexes ' , Inorganic Chemistry , vol. Articles ASAP . https://doi.org/10.1021/acs.inorgchem.9b03309
Publication
Inorganic Chemistry
Status
Peer reviewed
DOI
https://doi.org/10.1021/acs.inorgchem.9b03309
ISSN
0020-1669
Type
Journal article
Rights
Copyright © 2020 American Chemical Society. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1021/acs.inorgchem.9b03309
Description
Authors thank EaStCHEM and the School of Chemistry in St Andrews for support. OR thanks the Marsden Fund of the New Zealand Government (contract MAU1204), administered by the Royal Society of New Zealand for financial support of this work.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/21369

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter