Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorChatterjee, Soumyo
dc.contributor.authorPayne, Julia
dc.contributor.authorIrvine, John T.S.
dc.contributor.authorPal, Amlan J.
dc.date.accessioned2021-02-03T00:37:04Z
dc.date.available2021-02-03T00:37:04Z
dc.date.issued2020-02-28
dc.identifier266954523
dc.identifier9cb6b5a7-9bbd-4fd4-9ff5-4a341b441572
dc.identifier85080958291
dc.identifier000519704200022
dc.identifier.citationChatterjee , S , Payne , J , Irvine , J T S & Pal , A J 2020 , ' Bandgap bowing in a zero-dimensional hybrid halide perovskite derivative : spin-orbit coupling: versus lattice strain ' , Journal of Materials Chemistry A , vol. 8 , no. 8 , pp. 4416-4427 . https://doi.org/10.1039/c9ta12263jen
dc.identifier.issn2050-7488
dc.identifier.otherORCID: /0000-0002-8394-3359/work/70919727
dc.identifier.otherORCID: /0000-0003-3324-6018/work/70919993
dc.identifier.urihttps://hdl.handle.net/10023/21360
dc.descriptionA.J.P. acknowledges the JC Bose National Fellowship of SERB (SB/S2/JCB-001/2016) and S.C. acknowledges the DST INSPIRE Fellowship (IF 140158) and Newton-Bhabha PhD placements programme 2017–18 (DST/INSPIRE/NBHF/2017/25).en
dc.description.abstractWe have considered a zero-dimensional hybrid halide perovskite derivative system, namely MA3(Sb1-xBix)2I9, to study the bandgap dependence on metal substitution. Similar to tin-lead mixed halide perovskites (MASn1-xPbxI3), the composition dependence of the optical bandgap in the MA3(Sb1-xBix)2I9 solid-state alloys showed evidence of a quadratic (bow-like) behavior where an intermediate compound containing an equimolar contribution of antimony and bismuth, MA3(Sb0.5Bi0.5)2I9 offered the narrowest bandgap of around 1.90 eV; this is markedly lower than the bandgap of the end members MA3Sb2I9 (2.36 eV) and MA3Bi2I9 (2.16 eV). In addition, we have observed the bowing in the transport gap of MA3(Sb1-xBix)2I9 that has been derived from scanning tunneling spectroscopy and density of states spectra thereof. To explain the underlying mechanism, we speculate that an antagonism between spin orbit coupling and its competing component, namely lattice strain, may have led to this bow-like nature in both optical and transport gaps. The band-diagram of heterojunctions based on MA3(Sb1-xBix)2I9 accordingly depended on the metal-composition; solar cell characteristics of the heterojunctions followed the change in the bandgap, morphology, and also the exciton binding energy.
dc.format.extent12
dc.format.extent1258179
dc.language.isoeng
dc.relation.ispartofJournal of Materials Chemistry Aen
dc.subjectBandgap bowingen
dc.subjectZero-dimensional hybrid halide perovskite derivativeen
dc.subjectBismuth substitution at antimony sitesen
dc.subjectSpin-orbit couplingen
dc.subjectLattice strainen
dc.subjectExciton binding energyen
dc.subjectQD Chemistryen
dc.subjectChemistry(all)en
dc.subjectRenewable Energy, Sustainability and the Environmenten
dc.subjectMaterials Science(all)en
dc.subjectDASen
dc.subjectSDG 7 - Affordable and Clean Energyen
dc.subject.lccQDen
dc.titleBandgap bowing in a zero-dimensional hybrid halide perovskite derivative : spin-orbit coupling: versus lattice strainen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. Centre for Designer Quantum Materialsen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.identifier.doi10.1039/c9ta12263j
dc.description.statusPeer revieweden
dc.date.embargoedUntil2021-02-03


This item appears in the following Collection(s)

Show simple item record