Files in this item
On the growth of generating sets for direct powers of semigroups
Item metadata
dc.contributor.author | Hyde, James Thomas | |
dc.contributor.author | Loughlin, Nicholas | |
dc.contributor.author | Quick, Martyn | |
dc.contributor.author | Ruskuc, Nik | |
dc.contributor.author | Wallis, Alistair | |
dc.date.accessioned | 2011-12-23T09:38:40Z | |
dc.date.available | 2011-12-23T09:38:40Z | |
dc.date.issued | 2012 | |
dc.identifier.citation | Hyde , J T , Loughlin , N , Quick , M , Ruskuc , N & Wallis , A 2012 , ' On the growth of generating sets for direct powers of semigroups ' , Semigroup Forum , vol. 84 , no. 1 , pp. 116-130 . https://doi.org/10.1007/s00233-011-9352-4 | en |
dc.identifier.issn | 0037-1912 | |
dc.identifier.other | PURE: 5264895 | |
dc.identifier.other | PURE UUID: 9aa8e582-8369-4348-8576-4046e357c50d | |
dc.identifier.other | Scopus: 84856288819 | |
dc.identifier.other | ORCID: /0000-0002-5227-2994/work/58054923 | |
dc.identifier.other | ORCID: /0000-0003-2415-9334/work/73702075 | |
dc.identifier.uri | http://hdl.handle.net/10023/2129 | |
dc.description.abstract | For a semigroup S its d-sequence is d(S) = (d1, d2, d3, . . .), where di is the smallest number of elements needed to generate the ith direct power of S. In this paper we present a number of facts concerning the type of growth d(S) can have when S is an infinite semigroup, comparing them with the corresponding known facts for infinite groups, and also for finite groups and semigroups. | |
dc.language.iso | eng | |
dc.relation.ispartof | Semigroup Forum | en |
dc.rights | This is an author version of this article. The original publication (c) Springer Science+ Business Media, LLC 20011 is available at www.springerlink.com | en |
dc.subject | Semigroup | en |
dc.subject | Monoid | en |
dc.subject | Direct power | en |
dc.subject | Generating set | en |
dc.subject | QA Mathematics | en |
dc.subject.lcc | QA | en |
dc.title | On the growth of generating sets for direct powers of semigroups | en |
dc.type | Journal article | en |
dc.contributor.sponsor | EPSRC | en |
dc.description.version | Postprint | en |
dc.contributor.institution | University of St Andrews. School of Mathematics and Statistics | en |
dc.contributor.institution | University of St Andrews. Pure Mathematics | en |
dc.contributor.institution | University of St Andrews. Centre for Interdisciplinary Research in Computational Algebra | en |
dc.identifier.doi | https://doi.org/10.1007/s00233-011-9352-4 | |
dc.description.status | Peer reviewed | en |
dc.identifier.grantnumber | EP/H011978/1 | en |
This item appears in the following Collection(s)
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.