Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorGray, R
dc.contributor.authorRuskuc, Nik
dc.date.accessioned2011-12-23T09:38:35Z
dc.date.available2011-12-23T09:38:35Z
dc.date.issued2012
dc.identifier.citationGray , R & Ruskuc , N 2012 , ' On maximal subgroups of free idempotent generated semigroups ' , Israel Journal of Mathematics , vol. 189 , no. 1 , pp. 147-176 . https://doi.org/10.1007/s11856-011-0154-xen
dc.identifier.issn0021-2172
dc.identifier.otherPURE: 5160039
dc.identifier.otherPURE UUID: a2548ade-203f-4e03-9cdf-04ef16f8352e
dc.identifier.otherScopus: 84862634038
dc.identifier.otherORCID: /0000-0003-2415-9334/work/73702073
dc.identifier.urihttp://hdl.handle.net/10023/2128
dc.description.abstractWe prove the following results: (1) Every group is a maximal subgroup of some free idempotent generated semigroup. (2) Every finitely presented group is a maximal subgroup of some free idempotent generated semigroup arising from a finite semigroup. (3) Every group is a maximal subgroup of some free regular idempotent generated semigroup. (4) Every finite group is a maximal subgroup of some free regular idempotent generated semigroup arising from a finite regular semigroup. As a technical prerequisite for these results we establish a general presentation for the maximal subgroups based on a Reidemeister–Schreier type rewriting.
dc.language.isoeng
dc.relation.ispartofIsrael Journal of Mathematicsen
dc.rightsThis is an author version of this article. The original publication is available at www.springerlink.comen
dc.subjectQA Mathematicsen
dc.subject.lccQAen
dc.titleOn maximal subgroups of free idempotent generated semigroupsen
dc.typeJournal articleen
dc.description.versionPostprinten
dc.contributor.institutionUniversity of St Andrews.Pure Mathematicsen
dc.contributor.institutionUniversity of St Andrews.Centre for Interdisciplinary Research in Computational Algebraen
dc.identifier.doihttps://doi.org/10.1007/s11856-011-0154-x
dc.description.statusPeer revieweden


This item appears in the following Collection(s)

Show simple item record