Show simple item record

Files in this item


Item metadata

dc.contributor.authorHaehnle, Bastian
dc.contributor.authorLamla,, Markus
dc.contributor.authorSparrer,, Konstantin M. J
dc.contributor.authorGather, Malte C.
dc.contributor.authorKuehne, Alexander J. C.
dc.identifier.citationHaehnle , B , Lamla, M , Sparrer, K M J , Gather , M C & Kuehne , A J C 2020 , ' Narrow stimulated resonance Raman scattering and WGM lasing in small conjugated polymer particles for live cell tagging and tracking ' , Advanced Optical Materials , vol. Early View , 2001553 .
dc.identifier.otherPURE: 271408234
dc.identifier.otherPURE UUID: 64ae30d7-ae1a-4ead-a44b-d867c2ab7fc1
dc.identifier.otherORCID: /0000-0002-4857-5562/work/85567440
dc.identifier.otherWOS: 000596807500001
dc.identifier.otherScopus: 85097407981
dc.descriptionThe authors thank the Deutsche Forschungsgemeinschaft (DFG) for funding this research (grant no. KU 2738/3-2). KMJS is supported by the German Federal Ministry of Education and Research (IMMUNOMOD research group, 01KI2014). M.C.G. acknowledges financial support from the European Research Council under the European Union’s Horizon 2020 Framework Programme (ERC StG ABLASE, 640012) and from the Alexander von Humboldt Stiftung (Humboldt-Professorship).en
dc.description.abstractConjugated polymer particles are brightly fluorescing and stable materials for live cell imaging. Combination of conjugated polymers with a whispering gallery mode (WGM) resonator allows laser emission from microscale particles. Once internalized by cells, the mode pattern of the laser emission can be used for tagging and tracking, as each laser spectrum represents a bar code to identify individual cells. However, currently these particle systems are limited by their large size, which might interfere with cellular functions. Here we present, stimulated resonance Raman scattering (SRRS) in small conjugated polymer microparticles as a new method for generating narrow emission as an alternative to WGM-based laser emission. This opens up spectral range for multiplexing optical readout and multicolor imaging of live cells. We discuss the synthesis of monodisperse micron-sized poly(fluorene-co-divinylbenzene) particles and characterize their WGM and SRRS emission. Finally, we showcase how these particles and their emission can be employed in live cell imaging and tagging.
dc.relation.ispartofAdvanced Optical Materialsen
dc.rightsCopyright © 2020 The Authors. Advanced Optical Materials published by Wiley‐VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.en
dc.subjectlive cell imagingen
dc.subjectConjugated polymer particlesen
dc.subjectLaser emissionen
dc.subjectWhispering gallery modeen
dc.subjectQC Physicsen
dc.titleNarrow stimulated resonance Raman scattering and WGM lasing in small conjugated polymer particles for live cell tagging and trackingen
dc.typeJournal articleen
dc.contributor.sponsorEuropean Research Councilen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. Sir James Mackenzie Institute for Early Diagnosisen
dc.contributor.institutionUniversity of St Andrews. Centre for Biophotonicsen
dc.contributor.institutionUniversity of St Andrews. Biomedical Sciences Research Complexen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record