St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Velocity-pressure correlation in Navier-Stokes flows and the problem of global regularity

Thumbnail
View/Open
20200705correlation.pdf (422.9Kb)
Tran_2021_JFM_Velocity_pressure_CC.pdf (637.9Kb)
Date
25/03/2021
Author
Tran, Chuong V.
Yu, Xinwei
Dritschel, David G.
Keywords
Navier-Stokes equations
Global regularity
Velocity-pressure correlation
QC Physics
T-NDAS
BDC
R2C
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Incompressible fluid flows are characterised by high correlations between low pressure and high velocity and vorticity. The velocity-pressure correlation is an immediate consequence of fluid acceleration towards low pressure regions. On the other hand, fluid converging to a low pressure centre is driven sideways by a resistance due to incompressibility, giving rise to the formation of a strong vortex, hence the vorticity-pressure correlation. Meanwhile, the formation of such a vortex effectively shields the low pressure centre from incoming energetic fluid. As a result, a local pressure minimum can usually be found at the centre of a vortex where the vorticity is greatest but the velocity is relatively low,hence the misalignment of local pressure minima and velocity maxima. For Navier--Stokes flows, this misalignment has profound implications on extreme momentum growth and maintenance of regularity. This study examines the role of the velocity-pressure correlation on the problem of Navier--Stokes global regularity. On the basis of estimates for flows locally satisfying the critical scaling of the Navier--Stokes system, a qualitative theory of this correlation is considered. The theory appears to be readily quantified, advanced and tested by theoretical, mathematical and numerical methods. Regularity criteria depending on the degree of the velocity-pressure correlation are presented and discussed in light of the above theory. The result suggests that as long as global pressure minimum (or minima) and velocity maximum (or maxima) are mutually exclusive, then regularity is likely to persist. This is the first result that makes use of an explicit measure of the velocity-pressure correlation as a key factor in the maintenance of regularity or development of singularity.
Citation
Tran , C V , Yu , X & Dritschel , D G 2021 , ' Velocity-pressure correlation in Navier-Stokes flows and the problem of global regularity ' , Journal of Fluid Mechanics , vol. 911 , A18 . https://doi.org/10.1017/jfm.2020.1033
Publication
Journal of Fluid Mechanics
Status
Peer reviewed
DOI
https://doi.org/10.1017/jfm.2020.1033
ISSN
0022-1120
Type
Journal article
Rights
Copyright © 2020 the Authors.
 
Copyright © The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Description
Funding: Yu is supported by an NSERC Discovery grant.
Collections
  • University of St Andrews Research
URL
http://www-vortex.mcs.st-and.ac.uk/~chuong/20200715correlation.pdf
URI
http://hdl.handle.net/10023/21136

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter