St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

High-level studies of the ionic states of norbornadiene and quadricyclane, including analysis of new experimental photoelectron spectra by configuration interaction and coupled cluster calculations

Thumbnail
View/Open
SupplMaterial_JCP.pdf (1.109Mb)
Palmer2020_JCP_High_level_AAM.pdf (3.520Mb)
Date
30/11/2020
Author
Palmer, Michael H
Coreno, Marcello
de Simone, Monica
Grazioli, Cesare
Aitken, R Alan
Hoffmann, Søren V
Jones, Nykola C
Peureux, Coralyse
Keywords
QD Chemistry
NDAS
Metadata
Show full item record
Abstract
Synchrotron-based photoelectron spectra (PES) of norbornadiene (NBD) and quadricyclane (QC) differ significantly from those in previous studies. The adiabatic ionization energy (AIE1) for NBD, assigned to the 2B1 state at 8.279 eV, shows a progression of 18 members with decreasing vibration frequency from 390 cm−1 to 340 cm−1; our calculated frequency is 381 cm−1. Similarly, the AIE1 for QC at 7.671 eV, assigned to the 2B2 state, discloses a vibrational progression of nine or more members with vibration frequency decreasing from 703 cm−1 to 660 cm−1; our calculated vibration frequency is 663 cm−1. These AIEs, determined by coupled cluster and fourth order Møller–Plesset perturbation theory, were very similar to the corresponding second order perturbation theory results. The calculated AIE symmetry sequences are 2B1 < 2A1 < 2A2 < 2B2 for NBD and 2B2 < 2A2 < 2B1 < 2A1 for QC. The overall PES vertical ionization energy profiles for both compounds were closely reproduced by Tamm–Dancoff approximation energies and intensities. The vibrational structure of the ionic states, determined using Franck–Condon methods, gave a good account of the observed spectra, but the observed envelopes for both IE1 are complex sets of vibrations, rather than single progressions. The NMR spectra for QC showed residual second order properties at 300 MHz; both QC and NBD have been theoretically analyzed in greater detail using AA/BB/CC/XX/ spectra, where all H are coupled; the magnetic shielding and spin–spin coupling constants obtained are similar to experimental values.
Citation
Palmer , M H , Coreno , M , de Simone , M , Grazioli , C , Aitken , R A , Hoffmann , S V , Jones , N C & Peureux , C 2020 , ' High-level studies of the ionic states of norbornadiene and quadricyclane, including analysis of new experimental photoelectron spectra by configuration interaction and coupled cluster calculations ' , The Journal of Chemical Physics , vol. 153 , no. 20 , 204303 . https://doi.org/10.1063/5.0031387
Publication
The Journal of Chemical Physics
Status
Peer reviewed
DOI
https://doi.org/10.1063/5.0031387
ISSN
0021-9606
Type
Journal article
Rights
Copyright © 2020 The Author(s). This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1063/5.0031387
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/21094

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter