Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorRheinlaender, Johannes
dc.contributor.authorDimitracopoulos, Andrea
dc.contributor.authorWallmeyer, Bernhard
dc.contributor.authorKronenberg, Nils M.
dc.contributor.authorChalut, Kevin J.
dc.contributor.authorGather, Malte C.
dc.contributor.authorBetz, Timo
dc.contributor.authorCharras, Guillaume
dc.contributor.authorFranze, Kristian
dc.date.accessioned2020-12-07T15:56:42Z
dc.date.available2020-12-07T15:56:42Z
dc.date.issued2020-09
dc.identifier268365527
dc.identifier85d1ad4b-2b21-4a6f-9305-d096b48b6186
dc.identifier85085287549
dc.identifier000535397800001
dc.identifier.citationRheinlaender , J , Dimitracopoulos , A , Wallmeyer , B , Kronenberg , N M , Chalut , K J , Gather , M C , Betz , T , Charras , G & Franze , K 2020 , ' Cortical cell stiffness is independent of substrate mechanics ' , Nature Materials , vol. 19 , pp. 1019–1025 . https://doi.org/10.1038/s41563-020-0684-xen
dc.identifier.issn1476-1122
dc.identifier.otherORCID: /0000-0002-4857-5562/work/75248649
dc.identifier.urihttps://hdl.handle.net/10023/21082
dc.descriptionFunding: We acknowledge funding from the German Science Foundation (DFG grant numbers RH 147/1-1 to J.R., EXC 1003 CiM to T.B.), the Herchel Smith Foundation (postdoctoral fellowship to A.D.), the Royal Society (University Research Fellowship to K.J.C.), the UK EPSRC (programme grant number EP/P030017/1 to M.C.G.), the Human Frontier Science Program (HFSP grant number RGP0018/2017 to T.B.), the European Research Council (consolidator grant numbers 772798 to K.J.C., 771201 to T.B., 647186 to G.C. and 772426 to K.F.), and the UK BBSRC (equipment grant number BB/R000042/1 to G.C. and research project grant number BB/N006402/1 to K.F.).en
dc.description.abstractCortical stiffness is an important cellular property that changes during migration, adhesion and growth. Previous atomic force microscopy (AFM) indentation measurements of cells cultured on deformable substrates have suggested that cells adapt their stiffness to that of their surroundings. Here we show that the force applied by AFM to a cell results in a significant deformation of the underlying substrate if this substrate is softer than the cell. This ‘soft substrate effect’ leads to an underestimation of a cell’s elastic modulus when analysing data using a standard Hertz model, as confirmed by finite element modelling and AFM measurements of calibrated polyacrylamide beads, microglial cells and fibroblasts. To account for this substrate deformation, we developed a ‘composite cell–substrate model’. Correcting for the substrate indentation revealed that cortical cell stiffness is largely independent of substrate mechanics, which has major implications for our interpretation of many physiological and pathological processes.
dc.format.extent1142865
dc.language.isoeng
dc.relation.ispartofNature Materialsen
dc.subjectCell stiffnessen
dc.subjectStiffeningen
dc.subjectAFMen
dc.subjectSusbtrate stiffnessen
dc.subjectPolyacrylamideen
dc.subjectERISMen
dc.subjectQC Physicsen
dc.subjectQH301 Biologyen
dc.subjectChemistry(all)en
dc.subjectMechanical Engineeringen
dc.subjectMechanics of Materialsen
dc.subjectMaterials Science(all)en
dc.subjectCondensed Matter Physicsen
dc.subjectDASen
dc.subjectBDCen
dc.subjectR2Cen
dc.subject.lccQCen
dc.subject.lccQH301en
dc.titleCortical cell stiffness is independent of substrate mechanicsen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Sir James Mackenzie Institute for Early Diagnosisen
dc.contributor.institutionUniversity of St Andrews. Centre for Biophotonicsen
dc.contributor.institutionUniversity of St Andrews. Biomedical Sciences Research Complexen
dc.identifier.doi10.1038/s41563-020-0684-x
dc.description.statusPeer revieweden
dc.date.embargoedUntil2020-11-25
dc.identifier.grantnumberEP/P030017/1en


This item appears in the following Collection(s)

Show simple item record