Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorRab, Ch.
dc.contributor.authorKamp, I.
dc.contributor.authorDominik, C.
dc.contributor.authorGinski, C.
dc.contributor.authorMuro-Arena, G. A.
dc.contributor.authorThi, W. -F.
dc.contributor.authorWaters, L. B. F. M.
dc.contributor.authorWoitke, P.
dc.date.accessioned2020-11-10T17:30:14Z
dc.date.available2020-11-10T17:30:14Z
dc.date.issued2020-10-15
dc.identifier.citationRab , C , Kamp , I , Dominik , C , Ginski , C , Muro-Arena , G A , Thi , W -F , Waters , L B F M & Woitke , P 2020 , ' Interpreting high spatial resolution line observations of planet-forming disks with gaps and rings : the case of HD 163296 ' , Astronomy & Astrophysics , vol. 642 , 165 . https://doi.org/10.1051/0004-6361/202038712en
dc.identifier.issn0004-6361
dc.identifier.otherPURE: 271171568
dc.identifier.otherPURE UUID: 25b9a6e9-1fb8-4837-89be-845dc0eabd05
dc.identifier.otherWOS: 000581917300002
dc.identifier.otherScopus: 85093961049
dc.identifier.urihttp://hdl.handle.net/10023/20943
dc.descriptionFunding: C. R., G. M.-A., and C. G. acknowledge funding from the Netherlands Organisation for Scientific Research (NWO) TOP-1 grant as part of the research programme “Herbig Ae/Be stars, Rosetta stones for understanding the formation of planetary systems”, project number 614.001.552.en
dc.description.abstractContext. Spatially resolved continuum observations of planet-forming disks show prominent ring and gap structures in their dust distribution. However, the picture from gas observations is much less clear and constraints on the radial gas density structure (i.e. gas gaps) remain rare and uncertain. Aims. We want to investigate the importance of thermo-chemical processes for the interpretation of high-spatial-resolution gas observations of planet-forming disks and their impact on the derived gas properties. Methods. We applied the radiation thermo-chemical disk code PRODIMO (PROtoplanetary DIsk MOdel) to model the dust and gas disk of HD 163296 self-consistently, using the DSHARP (Disk Substructure at High Angular Resolution) gas and dust observations. With this model we investigated the impact of dust gaps and gas gaps on the observables and the derived gas properties, considering chemistry, and heating and cooling processes. Results. We find distinct peaks in the radial line intensity profiles of the CO line data of HD 163296 at the location of the dust gaps. Our model indicates that those peaks are not only a consequence of a gas temperature increase within the gaps but are mainly caused by the absorption of line emission from the back side of the disk by the dust rings. For two of the three prominent dust gaps in HD 163296, we find that thermo-chemical effects are negligible for deriving density gradients via measurements of the rotation velocity. However, for the gap with the highest dust depletion, the temperature gradient can be dominant and needs to be considered to derive accurate gas density profiles. Conclusions. Self-consistent gas and dust thermo-chemical modelling in combination with high-quality observations of multiple molecules are necessary to accurately derive gas gap depths and shapes. This is crucial to determine the origin of gaps and rings in planet-forming disks and to improve the mass estimates of forming planets if they are the cause of the gap.
dc.format.extent17
dc.language.isoeng
dc.relation.ispartofAstronomy & Astrophysicsen
dc.rightsCopyright © ESO 2020. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1051/0004-6361/202038712.en
dc.subjectProtoplanetary disksen
dc.subjectRadiative transferen
dc.subjectPlanets and satellites: formationen
dc.subjectAstrochemistryen
dc.subjectMethods: numericalen
dc.subjectQB Astronomyen
dc.subjectQC Physicsen
dc.subjectI-PWen
dc.subject.lccQBen
dc.subject.lccQCen
dc.titleInterpreting high spatial resolution line observations of planet-forming disks with gaps and rings : the case of HD 163296en
dc.typeJournal articleen
dc.description.versionPostprinten
dc.contributor.institutionUniversity of St Andrews.School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews.St Andrews Centre for Exoplanet Scienceen
dc.identifier.doihttps://doi.org/10.1051/0004-6361/202038712
dc.description.statusPeer revieweden
dc.identifier.urlhttps://arxiv.org/abs/2008.05941v1en


This item appears in the following Collection(s)

Show simple item record