St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

X-ray studies of novel metal-organic frameworks

Date
01/12/2020
Author
Carpenter-Warren, Cameron Lewis
Supervisor
Slawin, Alexandra Martha Zoya
Funder
Engineering and Physical Sciences Research Council (EPSRC)
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
MOFs (Metal-organic frameworks) are a series of record-breaking materials that have been developed rapidly, in terms of variety, functionality, popularity and understanding, over the past quarter of a century. MOFs are defined not only by their inclusion of inorganic SBUs (Secondary building units) held together by organic linkers, but also by their potential for containing void space within their structures. MOFs quickly became the most porous materials in the world, surpassing the previous record holders, zeolites. Interest in these materials began with their ability to store and separate different gasses efficiently. It is however, their unique tunability that makes these materials so exciting, and they have since been put to work solving innumerable problems throughout the chemical and materials fields. The majority of MOFs use anionic, polydentate linkers, such as carboxylates, because they result in neutral MOFs with large SBUs, which retain their porosity upon solvent removal. It was found early on that using just neutral, N-donor linkers results in cationic frameworks which collapse upon guest removal. The work in this thesis explores the use of both N- and O-donor linkers in the same system, with the aim of synthesizing novel structures with unique topologies and physical properties. The first two chapters of this work will briefly introduce the history and theory behind crystallography and diffraction techniques, then MOFs and some of the associated characterisation techniques and structural features. The main chapter of this work will then detail the structural characterisation of 18 novel mixed N/O-donor MOFs synthesized by the author or by Reza Abazari's group at Tarbiat Modares University, Iran. The materials produced spanned a range of dimensionalities, and the geometrical and topological features of these new compounds are discussed and compared with analogues in the literature. Unique SBUs were achieved in some of these structures, resulting in three new MOF topologies. The two chapters following this will describe some additional MOFs which, despite failing to incorporate the N-donor linkers, are still new structures. The first of these two chapters focuses mainly on transition metal structures, with some examples of SBU modification by N-donor ligands to produce rare topologies. The second of these chapters focuses solely on new lanthanoid MOFs. The penultimate chapter contains the experimental procedures involved in synthesizing and characterizing the MOFs in this work. The final chapter is an additional structures section, depicting some of the other new structures run and solved by the author. The Supplementary information can be found at the end of this volume and contains a SC-XRD experimental table for each structure presented in this work.
DOI
https://doi.org/10.17630/sta/3
Type
Thesis, PhD Doctor of Philosophy
Rights
Embargo Date: 2023-07-16
Embargo Reason: Thesis restricted in accordance with University regulations. Print and electronic copy restricted until 17th July 2023
Collections
  • Chemistry Theses
Description of related resources
X-ray studies of novel metal-organic frameworks (Thesis data) Carpenter-Warren, C.L., University of St Andrews. DOI: https://doi.org/10.17630/a94ff62c-04e1-4290-9d2e-e8310f0f05b3
Related resources
https://doi.org/10.17630/a94ff62c-04e1-4290-9d2e-e8310f0f05b3
URI
http://hdl.handle.net/10023/20927

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter