Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorAhmad, Shahbaz
dc.contributor.authorCrawford, L. Ellis
dc.contributor.authorBuehl, Michael
dc.date.accessioned2020-10-28T11:30:47Z
dc.date.available2020-10-28T11:30:47Z
dc.date.issued2020-10-13
dc.identifier.citationAhmad , S , Crawford , L E & Buehl , M 2020 , ' Palladium–catalysed methoxycarbonylation of ethene with bidentate diphosphine ligands : a density functional theory study ' , Physical Chemistry Chemical Physics , vol. Advance article . https://doi.org/10.1039/D0CP04454Gen
dc.identifier.issn1463-9076
dc.identifier.otherPURE: 270704923
dc.identifier.otherPURE UUID: 10bd07b6-a1e1-48c5-adce-87c246e111b3
dc.identifier.otherORCID: /0000-0002-1095-7143/work/82179240
dc.identifier.otherScopus: 85095799897
dc.identifier.otherWOS: 000585861500014
dc.identifier.urihttp://hdl.handle.net/10023/20845
dc.descriptionAuthors thank EaStCHEM and the School of Chemistry for support.en
dc.description.abstractCatalytic methoxycarbonylation of ethene with a bidentate tertiary phosphine (DTBPX) and palladium has been explored at the B3PW91-D3/PCM level of density functional theory. Three different pathways for formation of methyl propanoate (MePro) have been studied, namely carbomethoxy (A), ketene (B) and hydride-hydroxyalkylpalladium pathways (C), the latter of which is favoured because it has the lowest overall kinetic barrier. After intermolecular methanolysis, a hydroxyalkylpalladium complex has been characterised on pathway C, which eventually leads to the low overall barrier to produce MePro. The possibility of copolymerisation leading to oligo-/polymers has also been considered. With a computed selectivity of >99% towards the formation of MePro and a reasonably low overall kinetic barrier of 23.0 kcal mol-1, pathway C appears to be the most plausible one. Consistent with experimental data, the overall barrier increases to 30.1 kcal mol-1 for a less bulky bidentate phosphine
dc.format.extent7
dc.language.isoeng
dc.relation.ispartofPhysical Chemistry Chemical Physicsen
dc.rightsCopyright © 2020 The Author(s). Open Access article. This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.en
dc.subjectMethoxycarbonylationen
dc.subjectAlkenesen
dc.subjectCarbonylationen
dc.subjectDensity functional calculationsen
dc.subjectHomogeneous catalysisen
dc.subjectMethyl propanoateen
dc.subjectPalladiumen
dc.subjectReaction mechanismsen
dc.subjectQD Chemistryen
dc.subject.lccQDen
dc.titlePalladium–catalysed methoxycarbonylation of ethene with bidentate diphosphine ligands : a density functional theory studyen
dc.typeJournal itemen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews.School of Chemistryen
dc.contributor.institutionUniversity of St Andrews.EaSTCHEMen
dc.identifier.doihttps://doi.org/10.1039/D0CP04454G
dc.description.statusPeer revieweden


This item appears in the following Collection(s)

Show simple item record