Intercomparison measurements of two 33S-enriched sulfur isotope standards
Abstract
Despite widespread applications of sulfur isotope mass-independent fractionation (MIF) signals for probing terrestrial and extra-terrestrial environments, there has been no international sulfur isotope reference material available for normalization of Δ33S and Δ36S data. International reference materials to anchor isotope values are useful for interlaboratory data comparisons and are needed to evaluate, e.g., whether issues exist associated with blanks and mass spectrometry when using different analytical approaches. We synthesized two sodium sulfate samples enriched in 33S with different magnitudes, and termed them S-MIF-1 and S-MIF-2, respectively. The sulfur isotopic compositions of these two samples were measured in five different laboratories using two distinct techniques to place them on the V-CDT scale for δ34S and a provisional V-CDT scale for Δ33S and Δ36S. We obtained average δ34S values of S-MIF-1 = 10.26 ± 0.22‰ and S-MIF-2 = 21.53 ± 0.26‰ (1σ, versus V-CDT). The average Δ33S and Δ36S values of S-MIF-1 were determined to be 9.54 ± 0.09‰ and -0.11 ± 0.25‰, respectively, while the average Δ33S and Δ36S values of S-MIF-2 are 11.39 ± 0.08‰ and -0.33 ± 0.13‰ (1σ, versus V-CDT). The lack of variation among the interlaboratory isotopic values suggests sufficient homogeneity of S-MIF-1 and S-MIF-2, especially for Δ33S. Although additional measurements may be needed to ensure the accuracy of the isotopic compositions of S-MIF-1 and S-MIF-2, they can serve as working standards for routine Δ33S analysis to improve data consistency, and have the potential to serve as secondary sulfur isotope reference materials to address issues such as scale contraction/expansion and for normalization and reporting of Δ33S and Δ36S between laboratories. For the same reasons as listed for sulfur isotopes, the same standards were also artificially enriched in 17O. The calibration is still in progress but first estimations gave Δ17O = 3.3 ± 0.3‰ with unassigned δ18O.
Citation
Geng , L , Savarino , J , Caillon , N , Gautier , E , Farquhar , J , Dottin , J W , Magalhães , N , Hattori , S , Ishino , S , Yoshida , N , Albarède , F , Albalat , E , Cartigny , P , Ono , S & Thiemens , M H 2019 , ' Intercomparison measurements of two 33 S-enriched sulfur isotope standards ' , Journal of Analytical Atomic Spectrometry , vol. 34 , no. 6 , pp. 1263-1271 . https://doi.org/10.1039/c8ja00451j
Publication
Journal of Analytical Atomic Spectrometry
Status
Peer reviewed
ISSN
0267-9477Type
Journal article
Rights
Copyright © 2019 The Author(s). Open Access article. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
Description
The Agence Nationale de la Recherche (ANR) via contract NT09-431976-VOLSOL is acknowledged for the financial support for JS. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska Curie grant agreement No. 700853. This work has also supported by the Japan Society for the Promotion of Science KAKENHI Grant Numbers 16H05884 (S. H.), 25887025, and 17H06105 (N. Y.). S. H. and J. S. appreciate support for this project from JSPS and CNRS under the JSPS–CNRS Joint Research Program. Travel visit support for J. S. was provided by the CNRS/PICS program. JF acknowledges support from NNX16AG39G and the Agouron Foundation. LG acknowledges Marie Curie Individual Fellowship and the University of Science and Technology of China, and additional financial support from the National Key Research and Development Program of China (2016YFA0302200) and National Science Foundation of China (41822605). NM acknowledges the Brazilian Government for a Science without Borders Fellowship (BEX1136-13-5). FA and EA thank Philippe Telouk for help with instrument tuning and INSU and ENS Lyon for support.Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.