St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mechanism–property correlation in coordination polymer crystals toward design of a superior sorbent

Thumbnail
View/Open
Li_AMI_Superiorsorbent_AAM.pdf (1.448Mb)
Date
13/11/2019
Author
Li, Cheng-Peng
Zhou, Hang
Wang, Jia-Jun
Liu, Bo-Lan
Wang, Si
Yang, Xi
Wang, Zhong-Liang
Liu, Chun-Sen
Du, Miao
Zhou, Wuzong
Keywords
Coordination polymer
Anion exchange
Dichromate
Perrhenate
Superior sorbent
Mechanism-property correlation
QD Chemistry
DAS
Metadata
Show full item record
Abstract
A methodology was developed to design superior sorbents of oxoanions. To integrate the high efficiency of chemisorption, selectivity, and recyclability into one sorbent, understanding the nature of oxoanions–sorbent interactions and the structural evolution of the sorbents is essential. Three cationic Ag(I) coordination polymers (CPs) are synthesized for dichromate (Cr2O72–) removal, and three distinct oxoanion-exchange mechanisms are identified, namely, the replacement, breath, and reconstruction processes, depending on the degree of framework distortion induced by the dichromate–CP interactions. The single crystal to single crystal transformation during the oxoanion exchange has been investigated by using single-crystal X-ray diffraction and energy-dispersive X-ray microanalysis. The replacement process, due to a weak chemisorption, shows excellent recyclability at the cost of reduction of efficiency and selectivity of adsorption. The reconstruction process may achieve a high efficiency and selectivity, but it loses recyclability. Due to the formation of a Ag–O(dichromate) bond and the breathing effect of the framework, the sorbent with the breath mechanism shows both superior efficiency and high recyclability in dichromate removal. The study of perrhenate (ReO4–) removal using the same CPs demonstrates that one CP performing the reconstruction process during dichromate removal turns to the breath process in removal of perrhenate anions. These results of mechanism–property correlation provide an insight into improvement of the methodology to fabricate a superior CP sorbent for oxoanion removal.
Citation
Li , C-P , Zhou , H , Wang , J-J , Liu , B-L , Wang , S , Yang , X , Wang , Z-L , Liu , C-S , Du , M & Zhou , W 2019 , ' Mechanism–property correlation in coordination polymer crystals toward design of a superior sorbent ' , ACS Applied Materials & Interfaces , vol. 11 , no. 45 , pp. 42375-42384 . https://doi.org/10.1021/acsami.9b16386
Publication
ACS Applied Materials & Interfaces
Status
Peer reviewed
DOI
https://doi.org/10.1021/acsami.9b16386
ISSN
1944-8244
Type
Journal article
Rights
Copyright © 2019 American Chemical Society. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1021/acsami.9b16386
Description
This work was financially supported by the National Natural Science Foundation of China (21571158 and 21771139), Tianjin Natural Science Foundation (17JCYBJC22800), and the Program for Innovative Research Team in University of Tianjin (TD13-5074).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/20816

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter