St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Single molecule spectroscopy of polyfluorene chains reveals β-phase content and phase reversibility in organic solvents

Thumbnail
View/Open
Brenlla_et_al_supp_23_07.pdf (1.502Mb)
Brenlla_et_al_23_07_.pdf (1.451Mb)
Date
09/10/2019
Author
Brenlla, Alfonso
Tenopala-Carmona, Francisco
Kanibolotsky, Alexander L.
Skabara, Peter J.
Samuel, Ifor David William
Penedo-Esteiro, Juan Carlos
Keywords
QC Physics
QH301 Biology
T Technology
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Conjugated polymers are an important class of organic semiconductors that can be deposited from solution to make optoelectronic devices. Among them, poly(9,9′-dioctylfluorene) (PFO) has distinctive optical properties arising from its ability to adopt an ordered planar conformation (β phase) from a disordered glassy phase (α phase). The β phase has attractive optical properties, but the precise mechanism of its formation in solution remains unknown. Here, we have combined specifically tailored polymer synthesis and surface-passivation strategies to provide the first spectroscopic characterization of single PFO chains in solution at room temperature. By anchoring PFO molecules at one end on an anti-adherent surface, we show that isolated chains can adopt the β-phase conformation in a solvent-dependent manner. Furthermore, we find that individual PFO chains can reversibly switch multiple times between phases in response to solvent-exchange events. The methodology presented here for polymer synthesis and immobilization is widely applicable to investigate other luminescent polymers.
Citation
Brenlla , A , Tenopala-Carmona , F , Kanibolotsky , A L , Skabara , P J , Samuel , I D W & Penedo-Esteiro , J C 2019 , ' Single molecule spectroscopy of polyfluorene chains reveals β-phase content and phase reversibility in organic solvents ' , Matter , vol. In press . https://doi.org/10.1016/j.matt.2019.07.020
Publication
Matter
Status
Peer reviewed
DOI
https://doi.org/10.1016/j.matt.2019.07.020
ISSN
2590-2385
Type
Journal article
Rights
Copyright © 2019 Elsevier Inc. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1016/j.matt.2019.07.020
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/20750

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter