St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Non-conservative instabilities in optical vacuum traps

Thumbnail
View/Open
Svak_2020_Non_conservative_instabilities_SPIE_112970F.pdf (402.0Kb)
Date
24/02/2020
Author
Svak, V.
Arita, Y.
Simpson, S. H.
Brzobohatý, O.
Šiler, M.
Jákl, P.
Kanka, J.
Zemánek, P.
Dholakia, K.
Keywords
Birefringence
Instability
Optical force
Spin
QC Physics
Computer Science Applications
Electrical and Electronic Engineering
Electronic, Optical and Magnetic Materials
Applied Mathematics
Condensed Matter Physics
I-PW
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Particles held in optical tweezers are commonly thought to be at thermodynamic equilibrium with their environment. Under this assumption the elastic energy of the trap is equal to the thermal energy. As a result the variance of the particle position is completely independent of viscosity and inversely proportional to the optical power in the trap. Here we show that these conditions only hold for very high symmetry cases e.g. perfectly spherical particles in unaberrated, linearly polarized Gaussian traps. Here we show that any reduction in symmetry leads to asymmetrically coupled degrees of freedom. The associated force field is linearly non-conservative and the tweezer is no longer at equilibrium. In overdamped systems the effect is a underlying systematic bias to the Brownian motion. In underdamped systems, this systematic component can accumulate momentum, eventually destabilizing the trap. We illustrate this latter effect with reference to two systems, (i) an isotropic sphere in a circularly polarized trap, and (ii) a birefringent sphere in a linearly polarized trap. In both cases the instability can be approached either by decreasing air pressure or by increasing optical power. Close to instability, the trapped particle executes increasingly coherent motion that is highly sensitive to external perturbations. Potential applications to weak force sensing are discussed.
Citation
Svak , V , Arita , Y , Simpson , S H , Brzobohatý , O , Šiler , M , Jákl , P , Kanka , J , Zemánek , P & Dholakia , K 2020 , Non-conservative instabilities in optical vacuum traps . in D L Andrews , E J Galvez & H Rubinsztein-Dunlop (eds) , Complex Light and Optical Forces XIV . , 112970F , Proceedings of SPIE - The International Society for Optical Engineering , vol. 11297 , SPIE , Complex Light and Optical Forces XIV 2020 , San Francisco , California , United States , 4/02/20 . https://doi.org/10.1117/12.2545948
 
conference
 
Publication
Complex Light and Optical Forces XIV
DOI
https://doi.org/10.1117/12.2545948
ISSN
0277-786X
Type
Conference item
Rights
Copyright © 2020 Society of Photo-Optical Instrumentation Engineers (SPIE). This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1117/12.2545948.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/20745

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter