Geodynamic implications of synchronous Norite and TTG formation in the 3 Ga Maniitsoq Norite Belt, West Greenland
Date
22/09/2020Author
Keywords
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We present new data for the ∼3.0 Ga Maniitsoq Norite Belt of the Akia Terrane, West Greenland, with the aim of understanding its petrogenesis. The Maniitsoq Norite Belt is hosted in regional tonalite-trondhjemite-granodiorite (TTG) and dioritic orthogneisses, intruded by later sheets of TTG and granite pegmatites, and comprises two main rock types: plagioclase-rich “norites” and pyroxene-rich “melanorites”. Both norites and melanorites have high SiO2 contents (52–60 wt% SiO2), high bulk rock Mg# (0.57–0.83), and low TiO2 contents (0.1–0.7 wt%). Their trace element patterns are defined by depleted heavy Rare-Earth elements, highly enriched light Rare-Earth elements, negative anomalies in Nb, Ta, and Ti, and variable anomalies in Zr, Hf, and Eu. New zircon U-Pb geochronology data and previously published ages establish an emplacement age of 3,013 ± 1 Ma for the majority of the Maniitsoq Norite Belt, with magmatism continuing until 3,001 ± 3 Ma. This ∼12 Myr period of norite magmatism is coeval with an ongoing period of TTG production in the Akia Terrane. Norite Belt emplacement was closely followed by high temperature, low pressure granulite-facies metamorphism at ∼800°C and 900°C/GPa) and that the norite magmas were emplaced into thin crust and lithosphere. Compositions of the norites and melanorites can be explained by derivation from a single mafic parental melt (∼13 wt% MgO), with the norites predominantly accumulating plagioclase and the melanorites predominantly accumulating pyroxene. Evidence from field relationships, the presence of xenocrystic zircon, major element compositions and combined trace element and Hf-isotope modelling suggests the norites were contaminated by assimilation of ∼20–30% continental TTG crust. Geochemical and Hf-Nd isotopic constraints indicate that the norite mantle source was depleted, and that this depletion occurred significantly before the emplacement of the norite magmas. Contemporaneous production of both TTGs and norite, their emplacement in thin crust, and the rapid transition to high temperature, low pressure granulite-facies metamorphism is best explained by their formation in an ultra-hot orogeny. Formation of norites in this setting may be restricted to >2.7 Ga, when geothermal gradients were higher on Earth.
Citation
Waterton , P , Hyde , W , Tusch , J , Hollis , J , Kirkland , C , Kinney , C , Yakymchuk , C , Gardiner , N , Zakharov , D , Olierook , H , Münker , C , Lightfoot , P & Szilas , K 2020 , ' Geodynamic implications of synchronous Norite and TTG formation in the 3 Ga Maniitsoq Norite Belt, West Greenland ' , Frontiers in Earth Science , vol. 8 , 562062 . https://doi.org/10.3389/feart.2020.562062
Publication
Frontiers in Earth Science
Status
Peer reviewed
ISSN
2296-6463Type
Journal article
Rights
Copyright Copyright © 2020 Waterton, Hyde, Tusch, Hollis, Kirkland, Kinney, Yakymchuk, Gardiner, Zakharov, Olierook, Lightfoot and Szilas. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Description
This study was supported by Villum Fonden through grant VKR18978 to K.S. Funding for article fees was supplied by the Ministry of Mineral Resources, Government of Greenland.Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.