Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorGoelzer, H.
dc.contributor.authorNowicki, S.
dc.contributor.authorPayne, A.
dc.contributor.authorLarour, E.
dc.contributor.authorSeroussi, H.
dc.contributor.authorLipscomb, W. H.
dc.contributor.authorGregory, J.
dc.contributor.authorAbe-Ouchi, A.
dc.contributor.authorShepherd, A.
dc.contributor.authorSimon, E.
dc.contributor.authorAgosta, C.
dc.contributor.authorAlexander, P.
dc.contributor.authorAschwanden, A.
dc.contributor.authorBarthel, A.
dc.contributor.authorCalov, R.
dc.contributor.authorChambers, C.
dc.contributor.authorChoi, Y.
dc.contributor.authorCuzzone, J.
dc.contributor.authorDumas, C.
dc.contributor.authorEdwards, T.
dc.contributor.authorFelikson, D.
dc.contributor.authorFettweis, X.
dc.contributor.authorGolledge, N. R.
dc.contributor.authorGreve, R.
dc.contributor.authorHumbert, A.
dc.contributor.authorHuybrechts, P.
dc.contributor.authorLe clec'h, S.
dc.contributor.authorLee, V.
dc.contributor.authorLeguy, G.
dc.contributor.authorLittle, C.
dc.contributor.authorLowry, D. P.
dc.contributor.authorMorlighem, M.
dc.contributor.authorNias, I.
dc.contributor.authorQuiquet, A.
dc.contributor.authorRückamp, M.
dc.contributor.authorSchlegel, N.-J.
dc.contributor.authorSlater, Donald A.
dc.contributor.authorSmith, R. S.
dc.contributor.authorStraneo, F.
dc.contributor.authorTarasov, L.
dc.contributor.authorvan de Wal, R.
dc.contributor.authorvan den Broeke, M.
dc.date.accessioned2020-09-24T09:30:04Z
dc.date.available2020-09-24T09:30:04Z
dc.date.issued2020-09-17
dc.identifier.citationGoelzer , H , Nowicki , S , Payne , A , Larour , E , Seroussi , H , Lipscomb , W H , Gregory , J , Abe-Ouchi , A , Shepherd , A , Simon , E , Agosta , C , Alexander , P , Aschwanden , A , Barthel , A , Calov , R , Chambers , C , Choi , Y , Cuzzone , J , Dumas , C , Edwards , T , Felikson , D , Fettweis , X , Golledge , N R , Greve , R , Humbert , A , Huybrechts , P , Le clec'h , S , Lee , V , Leguy , G , Little , C , Lowry , D P , Morlighem , M , Nias , I , Quiquet , A , Rückamp , M , Schlegel , N-J , Slater , D A , Smith , R S , Straneo , F , Tarasov , L , van de Wal , R & van den Broeke , M 2020 , ' The future sea-level contribution of the Greenland ice sheet : a multi-model ensemble study of ISMIP6 ' , The Cryosphere , vol. 14 , no. 9 , pp. 3071-3096 . https://doi.org/10.5194/tc-14-3071-2020en
dc.identifier.issn1994-0416
dc.identifier.otherPURE: 270326313
dc.identifier.otherPURE UUID: ae3f6687-3e6e-4d41-8d4a-79b5c24ee1a3
dc.identifier.otherBibtex: tc-14-3071-2020
dc.identifier.otherORCID: /0000-0001-8394-6149/work/80995439
dc.identifier.otherWOS: 000572935000002
dc.identifier.otherScopus: 85092315789
dc.identifier.urihttps://hdl.handle.net/10023/20678
dc.description.abstractThe Greenland ice sheet is one of the largest contributors to global mean sea-level rise today and is expected to continue to lose mass as the Arctic continues to warm. The two predominant mass loss mechanisms are increased surface meltwater run-off and mass loss associated with the retreat of marine-terminating outlet glaciers. In this paper we use a large ensemble of Greenland ice sheet models forced by output from a representative subset of the Coupled Model Intercomparison Project (CMIP5) global climate models to project ice sheet changes and sea-level rise contributions over the 21st century. The simulations are part of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). We estimate the sea-level contribution together with uncertainties due to future climate forcing, ice sheet model formulations and ocean forcing for the two greenhouse gas concentration scenarios RCP8.5 and RCP2.6. The results indicate that the Greenland ice sheet will continue to lose mass in both scenarios until 2100, with contributions of 90±50 and 32±17 mm to sea-level rise for RCP8.5 and RCP2.6, respectively. The largest mass loss is expected from the south-west of Greenland, which is governed by surface mass balance changes, continuing what is already observed today. Because the contributions are calculated against an unforced control experiment, these numbers do not include any committed mass loss, i.e. mass loss that would occur over the coming century if the climate forcing remained constant. Under RCP8.5 forcing, ice sheet model uncertainty explains an ensemble spread of 40 mm, while climate model uncertainty and ocean forcing uncertainty account for a spread of 36 and 19 mm, respectively. Apart from those formally derived uncertainty ranges, the largest gap in our knowledge is about the physical understanding and implementation of the calving process, i.e. the interaction of the ice sheet with the ocean.
dc.format.extent26
dc.language.isoeng
dc.relation.ispartofThe Cryosphereen
dc.rightsCopyright © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.en
dc.subjectG Geography (General)en
dc.subjectGE Environmental Sciencesen
dc.subjectDASen
dc.subjectSDG 13 - Climate Actionen
dc.subjectSDG 14 - Life Below Wateren
dc.subject.lccG1en
dc.subject.lccGEen
dc.titleThe future sea-level contribution of the Greenland ice sheet : a multi-model ensemble study of ISMIP6en
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. Environmental Change Research Groupen
dc.contributor.institutionUniversity of St Andrews. School of Geography & Sustainable Developmenten
dc.identifier.doihttps://doi.org/10.5194/tc-14-3071-2020
dc.description.statusPeer revieweden


This item appears in the following Collection(s)

Show simple item record