St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Anaerobic nitrogen cycling on a Neoarchean ocean margin

Thumbnail
View/Open
Mettam_2019_EPSL_Anaerobic_AAM.pdf (960.9Kb)
Date
01/12/2019
Author
Mettam, Colin W.
Zerkle, Aubrey L.
Claire, Mark
Prave, Anthony R.
Poulton, Simon W.
Junium, Christopher K.
Keywords
Nitrogen isotopes
Carbon isotopes
Neoarchaean
GE Environmental Sciences
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
A persistently aerobic marine nitrogen cycle featuring the biologically mediated oxidation of ammonium to nitrate has likely been in place since the Great Oxidation Event (GOE) some 2.3 billion years ago. Although nitrogen isotope data from some Neoarchaean sediments suggests transient nitrate availability prior to the GOE, these data are open to other interpretations. This is especially so as these data come from relatively deep-water environments that were spatially divorced from shallow-water settings that were the most likely sites for the accumulation of oxygen and the generation of nitrate. Here we present the first nitrogen isotope data from contemporaneous shallow-water sediments to constrain the nitrogen cycle in shallow Late Archaean settings. The BH-1 Sacha core through the Campbellrand-Malmani carbonate platform records a transition from a shallow siliciclastic/carbonate ramp to a rimmed carbonate shelf with the potential for reduced communication with the open ocean. In these settings nitrogen isotope δ15N data from sub- to peri-tidal and lagoonal settings are close to 0‰, indicating diazotrophy or the complete utilization of remineralised ammonium with an isotopic composition of near 0‰. Our dataset also includes negative δ15N values that suggest the presence of an ammonium pool of concentrations sufficient to have allowed for non-quantitative assimilation. We suggest that this condition may have been the result of upwelling of phosphorus-rich deep waters into the photic zone, stimulating primary productivity and creating an enhanced flux of organic matter that was subsequently remineralised and persisted in the dominantly anoxic Neoarchaean marine environment. Notably, we find only limited evidence of coupled nitrification/denitrification, even in these shallow water environments, calling into question previous suggestions that the Late Archaean nitrogen cycle was characterized by widespread aerobic nitrogen cycling. Rather, aerobic nitrogen cycling was likely spatially heterogeneous and tied to loci of high oxygen production while zones of shallow water anoxia persisted.
Citation
Mettam , C W , Zerkle , A L , Claire , M , Prave , A R , Poulton , S W & Junium , C K 2019 , ' Anaerobic nitrogen cycling on a Neoarchean ocean margin ' , Earth and Planetary Science Letters , vol. 527 , 115800 . https://doi.org/10.1016/j.epsl.2019.115800
Publication
Earth and Planetary Science Letters
Status
Peer reviewed
DOI
https://doi.org/10.1016/j.epsl.2019.115800
ISSN
0012-821X
Type
Journal article
Rights
Copyright © 2019 Elsevier B.V. All rights reserved. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1016/j.epsl.2019.115800
Description
This study was supported financially by NERC Fellowship NE/H016805/2 (to AZ), NERC Standard Grant NE/J023485/2 (to AZ and MC), NSF EAR-1455258 (to CKJ).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/20637

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter