St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Radical-stimulated nucleophile release

Thumbnail
View/Open
RadNucReleaseRev3.pdf (1.584Mb)
Date
04/10/2019
Author
Walton, John C.
Keywords
QD Chemistry
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Experimental and computational results have shown that deprotonation was enhanced for precursors containing radical centers (RED-shift). An examination of whether the inverse heterolytic dissociations that release nucleophiles instead of electrophiles could also be stimulated by suitably sited radicals is reported in this paper. A DFT method was employed to assess the free energies of heterolytic dissociations releasing C-centered and O-centered nucleophiles. In most instances a radical adjacent to the incipient positive charge in the precursors led to significant enhancement of heterolytic dissociation, but inhibition was found in some cases. Greater enhancements were obtained with C-centered rather than O-centered radicals. Exergonic dissociations for both O- and C-centered nucleophiles could be achieved with fluorenylmethyl- and cyclohepta-2,4,6-trienylmethyl-containing precursors. Heterolytic phosphate release from ribose and deoxyribose nucleotide C4' radicals was also found to be enhanced. This provided supporting evidence of the importance of these radicals in DNA and RNA strand breaking. The effect of ethyne, ethene, and phenyl spacer units between the radical center and the incipient positive charge was examined. Evidence was obtained that the key factor promoting heterolytic dissociation was the resonance stabilization of the coreleased radical-cations.
Citation
Walton , J C 2019 , ' Radical-stimulated nucleophile release ' , Journal of Organic Chemistry , vol. 84 , no. 19 , pp. 12606-12616 . https://doi.org/10.1021/acs.joc.9b02159
Publication
Journal of Organic Chemistry
Status
Peer reviewed
DOI
https://doi.org/10.1021/acs.joc.9b02159
ISSN
0022-3263
Type
Journal article
Rights
Copyright © 2019 American Chemical Society. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1021/acs.joc.9b02159
Description
J.C.W. thanks EaStCHEM for financial support.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/20551

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter