Modelling VM latent characteristics and predicting application performance using semi-supervised non-negative matrix factorization
View/ Open
Date
19/10/2020Keywords
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Selecting a suitable VM instance type for an application can be difficult task because of the number of options and the variety of application requirements. Recent research takes a data-driven approach to model VM performance, but this requires carefully choosing a small set of relevant benchmarks as input. We propose a semi-supervised matrix-factorization-based latent variable approach to predict the performance of an unknown new application. This method allows to take a large set of benchmarks as input for VM performance modelling, and it uses the model and the performance measure of the new application on some of the target VMs to predict the performance on the rest of all VMs. We ran experiments with 373 micro-benchmarks from stress-ng and 37 AWS EC2 VMs to predict the scores of Geekbench accurately. Our initial results showed that the RMSE and STD of the predicted scores are 6.7 and 4.5 when sampling Geekbench on 5 VMs, and 10.0 and 2.8 when sampling 10.
Citation
Lin , Y , Barker , A D & Thomson , J D 2020 , Modelling VM latent characteristics and predicting application performance using semi-supervised non-negative matrix factorization . in 2020 IEEE 13th International Conference on Cloud Computing (CLOUD) . IEEE Computer Society , IEEE 13th International Conference on Cloud Computing (CLOUD 2020) , 19/10/20 . https://doi.org/10.1109/CLOUD49709.2020.00069 conference
Publication
2020 IEEE 13th International Conference on Cloud Computing (CLOUD)
Type
Conference item
Rights
Copyright © 2020 the Author(s)/the owners. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://ieeexplore.ieee.org/
Description
Funding: This work is a part of the ABC (Adaptive Brokerage for the Cloudproject) funded by EPSRC EP/R010528/1.Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.