St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modelling VM latent characteristics and predicting application performance using semi-supervised non-negative matrix factorization

Thumbnail
View/Open
cloud_short_submit.pdf (1023.Kb)
Date
19/10/2020
Author
Lin, Yuhui
Barker, Adam David
Thomson, John Donald
Keywords
Cloud computing
Matrix factorization
Latent variable model
Micro-benchmarks
QA75 Electronic computers. Computer science
I-PW
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Selecting a suitable VM instance type for an application can be difficult task because of the number of options and the variety of application requirements. Recent research takes a data-driven approach to model VM performance, but this requires carefully choosing a small set of relevant benchmarks as input. We propose a semi-supervised matrix-factorization-based latent variable approach to predict the performance of an unknown new application. This method allows to take a large set of benchmarks as input for VM performance modelling, and it uses the model and the performance measure of the new application on some of the target VMs to predict the performance on the rest of all VMs. We ran experiments with 373 micro-benchmarks from stress-ng and 37 AWS EC2 VMs to predict the scores of Geekbench accurately. Our initial results showed that the RMSE and STD of the predicted scores are 6.7 and 4.5 when sampling Geekbench on 5 VMs, and 10.0 and 2.8 when sampling 10.
Citation
Lin , Y , Barker , A D & Thomson , J D 2020 , Modelling VM latent characteristics and predicting application performance using semi-supervised non-negative matrix factorization . in 2020 IEEE 13th International Conference on Cloud Computing (CLOUD) . IEEE Computer Society , IEEE 13th International Conference on Cloud Computing (CLOUD 2020) , 19/10/20 . https://doi.org/10.1109/CLOUD49709.2020.00069
 
conference
 
Publication
2020 IEEE 13th International Conference on Cloud Computing (CLOUD)
DOI
https://doi.org/10.1109/CLOUD49709.2020.00069
Type
Conference item
Rights
Copyright © 2020 the Author(s)/the owners. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://ieeexplore.ieee.org/
Description
Funding: This work is a part of the ABC (Adaptive Brokerage for the Cloudproject) funded by EPSRC EP/R010528/1.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/20545

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter