St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kBP)

Thumbnail
View/Open
Reimer_2020_Radiocarbon_IntCal20_CC.pdf (1.462Mb)
Date
08/2020
Author
Reimer, Paula J.
Austin, William
Bard, Edouard
Bayliss, Alex
Blackwell, Paul G.
Ramsey, Christopher Bronk
Butzin, Martin
Cheng, Hai
Edwards, R. Lawrence
Friedrich, Michael
Grootes, Pieter M.
Guilderson, Thomas P.
Hajdas, Irka
Heaton, Timothy J.
Hogg, Alan G.
Hughen, Konrad A.
Kromer, Bernd
Manning, Sturt W.
Muscheler, Raimund
Palmer, Jonathan G.
Pearson, Charlotte
van der Plicht, Johnannes
Reimer, Ron W.
Richards, David A.
Scott, E. Marian
Southon, John R.
Turney, Christian S. M.
Wacker, Lukas
Adolphi, Florian
Büntgen, Ulf
Capano, Manuela
Fahrni, Simon
Fogtmann-Schulz, Alexandra
Friedrich, Ronny
Köhler, Peter
Kudsk, Sabrina
Miyake, Fusa
Olsen, Jesper
Reinig, Frederick
Sakamoto, Minoru
Sookdeo, Adam
Talamo, Sahra
Keywords
Calibration curve
Radiocarbon
IntCal20
GE Environmental Sciences
3rd-DAS
BDC
R2C
Metadata
Show full item record
Abstract
Radiocarbon (14C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals.
Citation
Reimer , P J , Austin , W , Bard , E , Bayliss , A , Blackwell , P G , Ramsey , C B , Butzin , M , Cheng , H , Edwards , R L , Friedrich , M , Grootes , P M , Guilderson , T P , Hajdas , I , Heaton , T J , Hogg , A G , Hughen , K A , Kromer , B , Manning , S W , Muscheler , R , Palmer , J G , Pearson , C , van der Plicht , J , Reimer , R W , Richards , D A , Scott , E M , Southon , J R , Turney , C S M , Wacker , L , Adolphi , F , Büntgen , U , Capano , M , Fahrni , S , Fogtmann-Schulz , A , Friedrich , R , Köhler , P , Kudsk , S , Miyake , F , Olsen , J , Reinig , F , Sakamoto , M , Sookdeo , A & Talamo , S 2020 , ' The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kBP) ' , Radiocarbon , vol. 62 , no. 4 , pp. 725-757 . https://doi.org/10.1017/RDC.2020.41
Publication
Radiocarbon
Status
Peer reviewed
DOI
https://doi.org/10.1017/RDC.2020.41
ISSN
0033-8222
Type
Journal article
Rights
Copyright © 2020 by the Arizona Board of Regents on behalf of the University of Arizona. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Description
Authors thank the National Natural Science Foundation of China grants NSFC 41888101 and NSFC 41731174, the 111 program of China (D19002), U.S. NSF Grant 1702816, and the Malcolm H. Wiener Foundation for support for research that contributed to the IntCal20 curve. The work on the Swiss and German YD trees was funded by the German Science foundation and the Swiss National Foundation (grant number: 200021L_157187). The operation in Aix-en-Provence is funded by the EQUIPEX ASTER-CEREGE, the Collège de France and the ANR project CARBOTRYDH (to EB). The work on the correlation of tree ring 14C with ice core 10Be was partially supported by the Swedish Research Council and the Knut and Alice Wallenberg foundation. M. Butzin is supported by the German Federal Ministry of Education and Research (BMBF) through the PalMod project (grant number: 01LP1505B). S. Talamo and M. Friedrich. are funded by the European Research Council under the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement No. 803147-RESOLUTION, awarded to ST). C. Turney would like to acknowledge support of the Australian Research Council (FL100100195 and DP170104665). P. Reimer and W. Austin acknowledge the support of the UKRI Natural Environment Research Council (Grant NE/M004619/1).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/20465

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter