St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

From a discrete model of chemotaxis with volume-filling to a generalized Patlak–Keller–Segel model

Thumbnail
View/Open
Bubba_2020_PRSA_Discrete_AAM.pdf (1.417Mb)
Date
27/05/2020
Author
Bubba, Federica
Lorenzi, Tommaso
Macfarlane, Fiona R.
Keywords
Chemotaxis
Discrete models
Generalized Patlak–Keller–Segel model
Volume-filling
QA Mathematics
QH301 Biology
Engineering(all)
Mathematics(all)
Physics and Astronomy(all)
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We present a discrete model of chemotaxis whereby cells responding to a chemoattractant are seen as individual agents whose movement is described through a set of rules that result in a biased random walk. In order to take into account possible alterations in cellular motility observed at high cell densities (i.e. volume-filling), we let the probabilities of cell movement be modulated by a decaying function of the cell density. We formally show that a general form of the celebrated Patlak–Keller–Segel (PKS) model of chemotaxis can be formally derived as the appropriate continuum limit of this discrete model. The family of steady-state solutions of such a generalized PKS model are characterized and the conditions for the emergence of spatial patterns are studied via linear stability analysis. Moreover, we carry out a systematic quantitative comparison between numerical simulations of the discrete model and numerical solutions of the corresponding PKS model, both in one and in two spatial dimensions. The results obtained indicate that there is excellent quantitative agreement between the spatial patterns produced by the two models. Finally, we numerically show that the outcomes of the two models faithfully replicate those of the classical PKS model in a suitable asymptotic regime.
Citation
Bubba , F , Lorenzi , T & Macfarlane , F R 2020 , ' From a discrete model of chemotaxis with volume-filling to a generalized Patlak–Keller–Segel model ' , Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences , vol. 476 , no. 2237 , 20190871 . https://doi.org/10.1098/rspa.2019.0871
Publication
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Status
Peer reviewed
DOI
https://doi.org/10.1098/rspa.2019.0871
ISSN
1364-5021
Type
Journal article
Rights
Copyright © 2020 The Author(s). Published by the Royal Society. All rights reserved. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1098/rspa.2019.0871
Description
Funding: The authors gratefully acknowledge support of the project PICS-CNRS no. 07688. F.B. acknowledges funding from the European Research Council (ERC, grant agreement No. 740623) and the Université Franco-Italienne.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/20394

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter