Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorGupta, Roopam K.
dc.contributor.authorBruce, Graham D.
dc.contributor.authorPowis, Simon J.
dc.contributor.authorDholakia, Kishan
dc.date.accessioned2020-08-03T10:30:02Z
dc.date.available2020-08-03T10:30:02Z
dc.date.issued2020-09
dc.identifier262382944
dc.identifiereec784e1-3bbc-4645-9a25-0bd713463b27
dc.identifier000554481800001
dc.identifier85088858681
dc.identifier.citationGupta , R K , Bruce , G D , Powis , S J & Dholakia , K 2020 , ' Deep learning enabled laser speckle wavemeter with a high dynamic range ' , Laser & Photonics Reviews , vol. 14 , no. 9 , 2000120 . https://doi.org/10.1002/lpor.202000120en
dc.identifier.issn1863-8899
dc.identifier.otherArXiv: http://arxiv.org/abs/1910.10702v1
dc.identifier.otherORCID: /0000-0003-4218-2984/work/78527531
dc.identifier.otherORCID: /0000-0003-3403-0614/work/78528004
dc.identifier.otherORCID: /0000-0002-3267-9009/work/78528384
dc.identifier.urihttps://hdl.handle.net/10023/20392
dc.descriptionFunding: This work was supported by a Medical Research Scotland PhD studentship PhD 873-2015 awarded to R.K.G, and grant funding from Leverhulme Trust (RPG-2017-197) and UK Engineering and Physical Sciences Research Council (grant EP/P030017/1).en
dc.description.abstractThe speckle pattern produced when a laser is scattered by a disordered medium has recently been shown to give a surprisingly accurate or broadband measurement of wavelength. Here it is shown that deep learning is an ideal approach to analyse wavelength variations using a speckle wavemeter due to its ability to identify trends and overcome low signal to noise ratio in complex datasets. This combination enables wavelength measurement at high precision over a broad operating range in a single step, with a remarkable capability to reject instrumental and environmental noise, which has not been possible with previous approaches. It is demonstrated that the noise rejection capabilities of deep learning provide attometre-scale wavelength precision over an operating range from 488 nm to 976 nm. This dynamic range is six orders of magnitude beyond the state of the art.
dc.format.extent8
dc.format.extent1899624
dc.language.isoeng
dc.relation.ispartofLaser & Photonics Reviewsen
dc.subjectAutomated noise rejectionen
dc.subjectDeep learningen
dc.subjectSpeckle metrologyen
dc.subjectWavelength measurementen
dc.subjectQC Physicsen
dc.subjectR Medicineen
dc.subjectT Technologyen
dc.subjectDASen
dc.subject.lccQCen
dc.subject.lccRen
dc.subject.lccTen
dc.titleDeep learning enabled laser speckle wavemeter with a high dynamic rangeen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorThe Leverhulme Trusten
dc.contributor.institutionUniversity of St Andrews. School of Medicineen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Centre for Biophotonicsen
dc.contributor.institutionUniversity of St Andrews. Biomedical Sciences Research Complexen
dc.contributor.institutionUniversity of St Andrews. Cellular Medicine Divisionen
dc.contributor.institutionUniversity of St Andrews. Sir James Mackenzie Institute for Early Diagnosisen
dc.identifier.doi10.1002/lpor.202000120
dc.description.statusPeer revieweden
dc.identifier.grantnumberEP/P030017/1en
dc.identifier.grantnumberRPG-2017-197en


This item appears in the following Collection(s)

Show simple item record