St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity

Thumbnail
View/Open
Nature_accepted_version.pdf (2.490Mb)
Date
23/01/2020
Author
Athukoralage, Januka Sahan
McMahon, Stephen
Zhang, Changyi
Gruschow, Sabine
Graham, Shirley
Krupovic, Mart
Whitaker, Rachel
Gloster, Tracey
White, Malcolm
Funder
BBSRC
BBSRC
Grant ID
BB/S000313/1
BB/R008035/1
Keywords
System
Evolutionary
Mechanism
Space
DNA
QH301 Biology
QR355 Virology
DAS
BDC
R2C
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The CRISPR system in bacteria and archaea provides adaptive immunity against mobile genetic elements. Type III CRISPR systems detect viral RNA, resulting in the activation of two regions of the Cas10 protein: an HD nuclease domain (which degrades viral DNA)1,2 and a cyclase domain (which synthesizes cyclic oligoadenylates from ATP)3,4,5. Cyclic oligoadenylates in turn activate defence enzymes with a CRISPR-associated Rossmann fold domain6, sculpting a powerful antiviral response7,8,9,10 that can drive viruses to extinction7,8. Cyclic nucleotides are increasingly implicated in host–pathogen interactions11,12,13. Here we identify a new family of viral anti-CRISPR (Acr) enzymes that rapidly degrade cyclic tetra-adenylate (cA4). The viral ring nuclease AcrIII-1 is widely distributed in archaeal and bacterial viruses and in proviruses. The enzyme uses a previously unknown fold to bind cA4 specifically, and a conserved active site to rapidly cleave this signalling molecule, allowing viruses to neutralize the type III CRISPR defence system. The AcrIII-1 family has a broad host range, as it targets cA4 signalling molecules rather than specific CRISPR effector proteins. Our findings highlight the crucial role of cyclic nucleotide signalling in the conflict between viruses and their hosts.
Citation
Athukoralage , J S , McMahon , S , Zhang , C , Gruschow , S , Graham , S , Krupovic , M , Whitaker , R , Gloster , T & White , M 2020 , ' An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity ' , Nature , vol. 577 , no. 7791 , pp. 572-575 . https://doi.org/10.1038/s41586-019-1909-5
Publication
Nature
Status
Peer reviewed
DOI
https://doi.org/10.1038/s41586-019-1909-5
ISSN
0028-0836
Type
Journal article
Rights
Copyright © 2020 Springer Nature. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/xxxx/10.1038/s41586-019-1909-5
Description
This work was supported by grants from the Biotechnology and Biological Sciences Research Council (BB/S000313/1 to M.F.W. and BB/R008035/1 to T.M.G.) and by a NASA Exobiology and Evolutionary Biology grant (NNX14AK23G to R.J.W.).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/20252

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter