Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorYe, Facheng
dc.contributor.authorJurikova, Hana
dc.contributor.authorAngiolini, Lucia
dc.contributor.authorBrand, Uwe
dc.contributor.authorCrippa, Gaia
dc.contributor.authorHenkel, Daniela
dc.contributor.authorLaudien, Jürgen
dc.contributor.authorHiebenthal, Claas
dc.contributor.authorŠmajgl, Danijela
dc.date.accessioned2020-07-14T11:30:03Z
dc.date.available2020-07-14T11:30:03Z
dc.date.issued2019-02-01
dc.identifier269138455
dc.identifier9219a9b1-2549-463d-a12c-ff152f2d0750
dc.identifier85061062326
dc.identifier.citationYe , F , Jurikova , H , Angiolini , L , Brand , U , Crippa , G , Henkel , D , Laudien , J , Hiebenthal , C & Šmajgl , D 2019 , ' Variation in brachiopod microstructure and isotope geochemistry under low-pH-ocean acidification conditions ' , Biogeosciences , vol. 16 , no. 2 , pp. 617-642 . https://doi.org/10.5194/bg-16-617-2019en
dc.identifier.issn1726-4170
dc.identifier.urihttps://hdl.handle.net/10023/20244
dc.descriptionThis project was supported by the European Union's Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement no. 643084 (BASE–LiNE Earth).en
dc.description.abstractIn the last few decades and in the near future CO2-induced ocean acidification is potentially a big threat to marine calcite-shelled animals (e.g. brachiopods, bivalves, corals and gastropods). Despite the great number of studies focusing on the effects of acidification on shell growth, metabolism, shell dissolution and shell repair, the consequences for biomineral formation remain poorly understood. Only a few studies have addressed the impact of ocean acidification on shell microstructure and geochemistry. In this study, a detailed microstructure and stable isotope geochemistry investigation was performed on nine adult brachiopod specimens of Magellania venosa (Dixon, 1789). These were grown in the natural environment as well as in controlled culturing experiments under different pH conditions (ranging from 7.35 to 8.15±0.05) over different time intervals (214 to 335 days). Details of shell microstructural features, such as thickness of the primary layer, density and size of endopunctae and morphology of the basic structural unit of the secondary layer were analysed using scanning electron microscopy. Stable isotope compositions (δ13C and δ18O) were tested from the secondary shell layer along shell ontogenetic increments in both dorsal and ventral valves. Based on our comprehensive dataset, we observed that, under low-pH conditions, M. venosa produced a more organic-rich shell with higher density of and larger endopunctae, and smaller secondary layer fibres. Also, increasingly negative δ13C and δ18O values are recorded by the shell produced during culturing and are related to the CO2 source in the culture set-up. Both the microstructural changes and the stable isotope results are similar to observations on brachiopods from the fossil record and strongly support the value of brachiopods as robust archives of proxies for studying ocean acidification events in the geologic past.
dc.format.extent26
dc.format.extent12491549
dc.language.isoeng
dc.relation.ispartofBiogeosciencesen
dc.subjectGE Environmental Sciencesen
dc.subjectEcology, Evolution, Behavior and Systematicsen
dc.subjectEarth-Surface Processesen
dc.subjectDASen
dc.subjectSDG 14 - Life Below Wateren
dc.subject.lccGEen
dc.titleVariation in brachiopod microstructure and isotope geochemistry under low-pH-ocean acidification conditionsen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. School of Earth & Environmental Sciencesen
dc.identifier.doi10.5194/bg-16-617-2019
dc.description.statusPeer revieweden


This item appears in the following Collection(s)

Show simple item record