St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

A note on algebraic rank, matroids, and metrized complexes

Thumbnail
View/Open
Len_2017_A_note_on_algebraic_MRL_827.pdf (128.9Kb)
Date
01/09/2017
Author
Len, Y.
Keywords
T-NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We show that the algebraic rank of divisors on certain graphs is related to the realizability problem of matroids. As a consequence, we produce a series of examples in which the algebraic rank depends on the ground field. We use the theory of metrized complexes to show that equality between the algebraic and combinatorial rank is not a sufficient condition for smoothability of divisors, thus giving a negative answer to a question posed by Caporaso, Melo, and the author.
Citation
Len , Y 2017 , ' A note on algebraic rank, matroids, and metrized complexes ' , Mathematical Research Letters , vol. 24 , no. 3 , pp. 827 – 837 . https://doi.org/10.4310/MRL.2017.v24.n3.a10
Publication
Mathematical Research Letters
Status
Peer reviewed
DOI
https://doi.org/10.4310/MRL.2017.v24.n3.a10
ISSN
1073-2780
Type
Journal article
Rights
Copyright © 2020 International Press of Boston, Inc. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.4310/MRL.2017.v24.n3.a10
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/20204

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter