Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorLen, Yoav
dc.date.accessioned2020-06-24T10:30:02Z
dc.date.available2020-06-24T10:30:02Z
dc.date.issued2017
dc.identifier.citationLen , Y 2017 , ' Hyperelliptic graphs and metrized complexes ' , Forum of Mathematics, Sigma , vol. 5 , e20 . https://doi.org/10.1017/fms.2017.13en
dc.identifier.issn2050-5094
dc.identifier.otherPURE: 268424393
dc.identifier.otherPURE UUID: 52266ef8-70ce-4677-8214-1dcc65a15415
dc.identifier.otherBibtex: Len2
dc.identifier.otherScopus: 85057480985
dc.identifier.otherORCID: /0000-0002-4997-6659/work/75610603
dc.identifier.urihttp://hdl.handle.net/10023/20138
dc.description.abstractWe prove a version of Clifford's theorem for metrized complexes. Namely, a metrized complex that carries a divisor of degree 2r and rank r (for 0<r<g−1) also carries a divisor of degree 2 and rank 1. We provide a structure theorem for hyperelliptic metrized complexes, and use it to classify divisors of degree bounded by the genus. We discuss a tropical version of Martens' theorem for metric graphs.
dc.format.extent15
dc.language.isoeng
dc.relation.ispartofForum of Mathematics, Sigmaen
dc.rightsCopyright © The Author 2017. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided theoriginal work is properly citeden
dc.subjectQA Mathematicsen
dc.subjectT-NDASen
dc.subjectBDCen
dc.subject.lccQAen
dc.titleHyperelliptic graphs and metrized complexesen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. Pure Mathematicsen
dc.identifier.doihttps://doi.org/10.1017/fms.2017.13
dc.description.statusPeer revieweden


This item appears in the following Collection(s)

Show simple item record