Show simple item record

Files in this item


Item metadata

dc.contributor.authorLen, Yoav
dc.identifier.citationLen , Y 2017 , ' Hyperelliptic graphs and metrized complexes ' , Forum of Mathematics, Sigma , vol. 5 , e20 .
dc.identifier.otherPURE: 268424393
dc.identifier.otherPURE UUID: 52266ef8-70ce-4677-8214-1dcc65a15415
dc.identifier.otherBibtex: Len2
dc.identifier.otherScopus: 85057480985
dc.identifier.otherORCID: /0000-0002-4997-6659/work/75610603
dc.description.abstractWe prove a version of Clifford's theorem for metrized complexes. Namely, a metrized complex that carries a divisor of degree 2r and rank r (for 0<r<g−1) also carries a divisor of degree 2 and rank 1. We provide a structure theorem for hyperelliptic metrized complexes, and use it to classify divisors of degree bounded by the genus. We discuss a tropical version of Martens' theorem for metric graphs.
dc.relation.ispartofForum of Mathematics, Sigmaen
dc.rightsCopyright © The Author 2017. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided theoriginal work is properly citeden
dc.subjectQA Mathematicsen
dc.titleHyperelliptic graphs and metrized complexesen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. Pure Mathematicsen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record