St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The pressure function for infinite equilibrium measures

Thumbnail
View/Open
pressure_rev.pdf (455.9Kb)
Date
08/2019
Author
Bruin, Henk
Terhesiu, Dalia
Todd, Mike
Keywords
QA Mathematics
T-NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Assume that (X,f) is a dynamical system and ϕ:X→[−∞,∞) is a potential such that the f-invariant measure μϕ equivalent to ϕ-conformal measure is infinite, but that there is an inducing scheme F=fτ with a finite measure μϕ¯ and polynomial tails μϕ¯(τ≥n) = O(n−β), β∈(0,1). We give conditions under which the pressure of f for a perturbed potential ϕ+sψ relates to the pressure of the induced system as P(ϕ+sψ) = (CP(ϕ+sψ))1/β(1+o(1)), together with estimates for the o(1)-error term. This extends results from Sarig to the setting of infinite equilibrium states. We give several examples of such systems, thus improving on the results of Lopes for the Pomeau-Manneville map with potential ϕt=−tlogf′, as well as on the results by Bruin & Todd on countably piecewise linear unimodal Fibonacci maps. In addition, limit properties of the family of measures μϕ+sψ as s→0 are studied and statistical properties (correlation coefficients and arcsine laws) under the limit measure are derived.
Citation
Bruin , H , Terhesiu , D & Todd , M 2019 , ' The pressure function for infinite equilibrium measures ' , Israel Journal of Mathematics , vol. 232 , no. 2 , pp. 775-826 . https://doi.org/10.1007/s11856-019-1887-1
Publication
Israel Journal of Mathematics
Status
Peer reviewed
DOI
https://doi.org/10.1007/s11856-019-1887-1
ISSN
0021-2172
Type
Journal article
Rights
© 2019, The Hebrew University of Jerusalem. This work has been made available online in accordance with the publisher’s policies. This is the author created accepted version manuscript following peer review and as such may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1007/s11856-019-1887-1
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/20108

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter